{"title":"意大利马氏体钢寿命评定新标准——通过中断单轴蠕变试验中P91和P92样品的XRD实验验证活性的初步结果","authors":"A. Tonti, Pietro De Blasi","doi":"10.3390/micro3010020","DOIUrl":null,"url":null,"abstract":"The Italian Thermotechnical Committee is drafting a new standard for the life assessment of creep-operated pressure equipment, including modern steam boilers. For the evaluation of the spent life ratio several methods are available, even if each of them is not exhaustive. It should be noted that the methods described must be considered in combination with NDTs and other kinds of tests, e.g., hardness tests. X-ray diffraction (XRD) is one of the methods that could be used to assess material evolution under creep conditions. The method allows for the study of phase transitions involving structural variations. It is possible to operate on both massive samples and powders. In this paper, work done with XRD, in the frame of a wider project regarding the study of the high-temperature behavior of welded martensitic steels, is presented. The results of the XRD analysis were compared with the results of the extraction replicas. This work concerns the controls of eight failed crept specimens submitted to XRD examinations. Eight XRD diagrams were produced and subsequently compared with 12 replicas for each specimen; that is, 96 extraction replicas were produced for this work. Then, around 5000 precipitates were analyzed for each specimen; therefore, for this work, around 40,000 precipitates were characterized with their chemical compositions. The average size of the precipitates was around 97 nm.","PeriodicalId":18398,"journal":{"name":"Micro & Nano Letters","volume":"5 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The New Italian Standard on the Life Assessment of Martensitic Steels—First Results of the Experimental Validation Activity of XRD by Testing P91 and P92 Samples from Interrupted Uniaxial Creep Tests\",\"authors\":\"A. Tonti, Pietro De Blasi\",\"doi\":\"10.3390/micro3010020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Italian Thermotechnical Committee is drafting a new standard for the life assessment of creep-operated pressure equipment, including modern steam boilers. For the evaluation of the spent life ratio several methods are available, even if each of them is not exhaustive. It should be noted that the methods described must be considered in combination with NDTs and other kinds of tests, e.g., hardness tests. X-ray diffraction (XRD) is one of the methods that could be used to assess material evolution under creep conditions. The method allows for the study of phase transitions involving structural variations. It is possible to operate on both massive samples and powders. In this paper, work done with XRD, in the frame of a wider project regarding the study of the high-temperature behavior of welded martensitic steels, is presented. The results of the XRD analysis were compared with the results of the extraction replicas. This work concerns the controls of eight failed crept specimens submitted to XRD examinations. Eight XRD diagrams were produced and subsequently compared with 12 replicas for each specimen; that is, 96 extraction replicas were produced for this work. Then, around 5000 precipitates were analyzed for each specimen; therefore, for this work, around 40,000 precipitates were characterized with their chemical compositions. The average size of the precipitates was around 97 nm.\",\"PeriodicalId\":18398,\"journal\":{\"name\":\"Micro & Nano Letters\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro & Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/micro3010020\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro & Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/micro3010020","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
The New Italian Standard on the Life Assessment of Martensitic Steels—First Results of the Experimental Validation Activity of XRD by Testing P91 and P92 Samples from Interrupted Uniaxial Creep Tests
The Italian Thermotechnical Committee is drafting a new standard for the life assessment of creep-operated pressure equipment, including modern steam boilers. For the evaluation of the spent life ratio several methods are available, even if each of them is not exhaustive. It should be noted that the methods described must be considered in combination with NDTs and other kinds of tests, e.g., hardness tests. X-ray diffraction (XRD) is one of the methods that could be used to assess material evolution under creep conditions. The method allows for the study of phase transitions involving structural variations. It is possible to operate on both massive samples and powders. In this paper, work done with XRD, in the frame of a wider project regarding the study of the high-temperature behavior of welded martensitic steels, is presented. The results of the XRD analysis were compared with the results of the extraction replicas. This work concerns the controls of eight failed crept specimens submitted to XRD examinations. Eight XRD diagrams were produced and subsequently compared with 12 replicas for each specimen; that is, 96 extraction replicas were produced for this work. Then, around 5000 precipitates were analyzed for each specimen; therefore, for this work, around 40,000 precipitates were characterized with their chemical compositions. The average size of the precipitates was around 97 nm.
期刊介绍:
Micro & Nano Letters offers express online publication of short research papers containing the latest advances in miniature and ultraminiature structures and systems. With an average of six weeks to decision, and publication online in advance of each issue, Micro & Nano Letters offers a rapid route for the international dissemination of high quality research findings from both the micro and nano communities.
Scope
Micro & Nano Letters offers express online publication of short research papers containing the latest advances in micro and nano-scale science, engineering and technology, with at least one dimension ranging from micrometers to nanometers. Micro & Nano Letters offers readers high-quality original research from both the micro and nano communities, and the materials and devices communities.
Bridging this gap between materials science and micro and nano-scale devices, Micro & Nano Letters addresses issues in the disciplines of engineering, physical, chemical, and biological science. It places particular emphasis on cross-disciplinary activities and applications.
Typical topics include:
Micro and nanostructures for the device communities
MEMS and NEMS
Modelling, simulation and realisation of micro and nanoscale structures, devices and systems, with comparisons to experimental data
Synthesis and processing
Micro and nano-photonics
Molecular machines, circuits and self-assembly
Organic and inorganic micro and nanostructures
Micro and nano-fluidics