进化支持向量机参数

Anh Trần Quang, Qianli Zhang, Xing Li
{"title":"进化支持向量机参数","authors":"Anh Trần Quang, Qianli Zhang, Xing Li","doi":"10.1109/ICMLC.2002.1176817","DOIUrl":null,"url":null,"abstract":"The kernel type, kernel parameters and upper bound C control the generalization of support vector machines. The best choice of kernel or C depends on each other and the art of researchers. This paper presents a general optimization problem of support vector machine parameters including a mixed kernel and different upper bounds for unbalanced data. The objectives are /spl xi/a-estimators of the error rate, recall and precision. Evolutionary algorithms are used to solve the problem. The performance of this method is illustrated with a standard data set of intrusion detection application.","PeriodicalId":90702,"journal":{"name":"Proceedings. International Conference on Machine Learning and Cybernetics","volume":"57 1","pages":"548-551 vol.1"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"Evolving support vector machine parameters\",\"authors\":\"Anh Trần Quang, Qianli Zhang, Xing Li\",\"doi\":\"10.1109/ICMLC.2002.1176817\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The kernel type, kernel parameters and upper bound C control the generalization of support vector machines. The best choice of kernel or C depends on each other and the art of researchers. This paper presents a general optimization problem of support vector machine parameters including a mixed kernel and different upper bounds for unbalanced data. The objectives are /spl xi/a-estimators of the error rate, recall and precision. Evolutionary algorithms are used to solve the problem. The performance of this method is illustrated with a standard data set of intrusion detection application.\",\"PeriodicalId\":90702,\"journal\":{\"name\":\"Proceedings. International Conference on Machine Learning and Cybernetics\",\"volume\":\"57 1\",\"pages\":\"548-551 vol.1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. International Conference on Machine Learning and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLC.2002.1176817\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Conference on Machine Learning and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2002.1176817","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

摘要

核类型、核参数和上界C控制支持向量机的泛化。内核或C的最佳选择取决于彼此和研究人员的艺术。本文提出了一个包含混合核和不同上界的支持向量机参数优化问题。目标是错误率、查全率和查准率的估计。进化算法被用来解决这个问题。以入侵检测应用的一个标准数据集为例说明了该方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evolving support vector machine parameters
The kernel type, kernel parameters and upper bound C control the generalization of support vector machines. The best choice of kernel or C depends on each other and the art of researchers. This paper presents a general optimization problem of support vector machine parameters including a mixed kernel and different upper bounds for unbalanced data. The objectives are /spl xi/a-estimators of the error rate, recall and precision. Evolutionary algorithms are used to solve the problem. The performance of this method is illustrated with a standard data set of intrusion detection application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信