{"title":"超线性椭圆半分不等式","authors":"Yunru Bai, L. Gasiński, Nikolaos S. Papageorgiou","doi":"10.15672/hujms.1173649","DOIUrl":null,"url":null,"abstract":"We study a nonlinear nonhomogeneous Dirichlet problem with a nonsmooth potential which is superlinear but without satisfying the Ambrosetti-Rabinowitz condition. Using the nonsmooth critical point theory and critical groups we prove two multiplicity theorems producing three and five solutions respectively. In the second multiplicity theorem, we provide sign information for all the solutions and the solutions are ordered.","PeriodicalId":55078,"journal":{"name":"Hacettepe Journal of Mathematics and Statistics","volume":"50 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Superlinear Elliptic Hemivariational Inequalities\",\"authors\":\"Yunru Bai, L. Gasiński, Nikolaos S. Papageorgiou\",\"doi\":\"10.15672/hujms.1173649\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study a nonlinear nonhomogeneous Dirichlet problem with a nonsmooth potential which is superlinear but without satisfying the Ambrosetti-Rabinowitz condition. Using the nonsmooth critical point theory and critical groups we prove two multiplicity theorems producing three and five solutions respectively. In the second multiplicity theorem, we provide sign information for all the solutions and the solutions are ordered.\",\"PeriodicalId\":55078,\"journal\":{\"name\":\"Hacettepe Journal of Mathematics and Statistics\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hacettepe Journal of Mathematics and Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.15672/hujms.1173649\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hacettepe Journal of Mathematics and Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.15672/hujms.1173649","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
We study a nonlinear nonhomogeneous Dirichlet problem with a nonsmooth potential which is superlinear but without satisfying the Ambrosetti-Rabinowitz condition. Using the nonsmooth critical point theory and critical groups we prove two multiplicity theorems producing three and five solutions respectively. In the second multiplicity theorem, we provide sign information for all the solutions and the solutions are ordered.
期刊介绍:
Hacettepe Journal of Mathematics and Statistics covers all aspects of Mathematics and Statistics. Papers on the interface between Mathematics and Statistics are particularly welcome, including applications to Physics, Actuarial Sciences, Finance and Economics.
We strongly encourage submissions for Statistics Section including current and important real world examples across a wide range of disciplines. Papers have innovations of statistical methodology are highly welcome. Purely theoretical papers may be considered only if they include popular real world applications.