{"title":"采用自定时电路技术的低功耗全局异步局部同步设计","authors":"S. Jou, I-Yao Chuang","doi":"10.1109/ISCAS.1997.621497","DOIUrl":null,"url":null,"abstract":"In this paper an efficient implementation of self-timed circuits whose hardware and control signals are significantly reduced is first proposed. By applying Globally Asynchronous Locally Synchronous (GALS) design techniques, the hardware overhead is further reduced. GALS and synchronous version of 8-bit fully pipelined array multipliers are implemented for comparisons. The results show that GALS version has smaller peak current, less power consumption under variable workload with small hardware overhead as compared to synchronous version.","PeriodicalId":68559,"journal":{"name":"电路与系统学报","volume":"39 1","pages":"1808-1811 vol.3"},"PeriodicalIF":0.0000,"publicationDate":"1997-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Low-power globally asynchronous locally synchronous design using self-timed circuit technology\",\"authors\":\"S. Jou, I-Yao Chuang\",\"doi\":\"10.1109/ISCAS.1997.621497\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper an efficient implementation of self-timed circuits whose hardware and control signals are significantly reduced is first proposed. By applying Globally Asynchronous Locally Synchronous (GALS) design techniques, the hardware overhead is further reduced. GALS and synchronous version of 8-bit fully pipelined array multipliers are implemented for comparisons. The results show that GALS version has smaller peak current, less power consumption under variable workload with small hardware overhead as compared to synchronous version.\",\"PeriodicalId\":68559,\"journal\":{\"name\":\"电路与系统学报\",\"volume\":\"39 1\",\"pages\":\"1808-1811 vol.3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"电路与系统学报\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCAS.1997.621497\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"电路与系统学报","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1109/ISCAS.1997.621497","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Low-power globally asynchronous locally synchronous design using self-timed circuit technology
In this paper an efficient implementation of self-timed circuits whose hardware and control signals are significantly reduced is first proposed. By applying Globally Asynchronous Locally Synchronous (GALS) design techniques, the hardware overhead is further reduced. GALS and synchronous version of 8-bit fully pipelined array multipliers are implemented for comparisons. The results show that GALS version has smaller peak current, less power consumption under variable workload with small hardware overhead as compared to synchronous version.