{"title":"初始组织对Ti-3Al-5Mo-4Cr-2Zr-1Fe合金相变及力学性能的影响","authors":"Qisong Zhu, B. Lu, Jia Xue, Feng Li, Liang Feng, Hui Chang","doi":"10.1080/02670836.2023.2230003","DOIUrl":null,"url":null,"abstract":"Phase transformation, microstructure evolution, and mechanical properties of Ti–3Al–5Mo–4Cr–2Zr–1Fe alloy were investigated during a continuous heating process. Three microstructures, specifically lath, duplex, and lamellar structures, were examined. The activation energies for phase transition in these structures were measured as 277, 220, and 193 kJ mol−1, respectively. The phase transition follows: For the lath structure, β transforms into αacicular (550–660°C), αacicular converts to β (660–785°C), αlath does to β (660–850°C); For the duplex structure, β transforms into αacicular (545–660°C), αacicular converts to β (660–770°C), αlath does to β (660–850°C); For the lamellar structure, β transforms into αsecondary (560–615°C), αsecondary converts to β (615–705°C), αlamellar dose to β (615–850°C). The lath and duplex structures exhibited favorable comprehensive properties compared to lamellar microstructure.","PeriodicalId":18232,"journal":{"name":"Materials Science and Technology","volume":"19 1","pages":"2921 - 2937"},"PeriodicalIF":1.7000,"publicationDate":"2023-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of initial microstructure on phase transformation and mechanical properties of Ti–3Al–5Mo–4Cr–2Zr–1Fe alloy\",\"authors\":\"Qisong Zhu, B. Lu, Jia Xue, Feng Li, Liang Feng, Hui Chang\",\"doi\":\"10.1080/02670836.2023.2230003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Phase transformation, microstructure evolution, and mechanical properties of Ti–3Al–5Mo–4Cr–2Zr–1Fe alloy were investigated during a continuous heating process. Three microstructures, specifically lath, duplex, and lamellar structures, were examined. The activation energies for phase transition in these structures were measured as 277, 220, and 193 kJ mol−1, respectively. The phase transition follows: For the lath structure, β transforms into αacicular (550–660°C), αacicular converts to β (660–785°C), αlath does to β (660–850°C); For the duplex structure, β transforms into αacicular (545–660°C), αacicular converts to β (660–770°C), αlath does to β (660–850°C); For the lamellar structure, β transforms into αsecondary (560–615°C), αsecondary converts to β (615–705°C), αlamellar dose to β (615–850°C). The lath and duplex structures exhibited favorable comprehensive properties compared to lamellar microstructure.\",\"PeriodicalId\":18232,\"journal\":{\"name\":\"Materials Science and Technology\",\"volume\":\"19 1\",\"pages\":\"2921 - 2937\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/02670836.2023.2230003\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/02670836.2023.2230003","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Effect of initial microstructure on phase transformation and mechanical properties of Ti–3Al–5Mo–4Cr–2Zr–1Fe alloy
Phase transformation, microstructure evolution, and mechanical properties of Ti–3Al–5Mo–4Cr–2Zr–1Fe alloy were investigated during a continuous heating process. Three microstructures, specifically lath, duplex, and lamellar structures, were examined. The activation energies for phase transition in these structures were measured as 277, 220, and 193 kJ mol−1, respectively. The phase transition follows: For the lath structure, β transforms into αacicular (550–660°C), αacicular converts to β (660–785°C), αlath does to β (660–850°C); For the duplex structure, β transforms into αacicular (545–660°C), αacicular converts to β (660–770°C), αlath does to β (660–850°C); For the lamellar structure, β transforms into αsecondary (560–615°C), αsecondary converts to β (615–705°C), αlamellar dose to β (615–850°C). The lath and duplex structures exhibited favorable comprehensive properties compared to lamellar microstructure.
期刊介绍:
《Materials Science and Technology》(MST) is an international forum for the publication of refereed contributions covering fundamental and technological aspects of materials science and engineering.