{"title":"只看一次,从卷积神经网络中挖掘独特的地标进行视觉位置识别","authors":"Zetao Chen, Fabiola Maffra, Inkyu Sa, M. Chli","doi":"10.1109/IROS.2017.8202131","DOIUrl":null,"url":null,"abstract":"Recently, image representations derived from Convolutional Neural Networks (CNNs) have been demonstrated to achieve impressive performance on a wide variety of tasks, including place recognition. In this paper, we take a step deeper into the internal structure of CNNs and propose novel CNN-based image features for place recognition by identifying salient regions and creating their regional representations directly from the convolutional layer activations. A range of experiments is conducted on challenging datasets with varied conditions and viewpoints. These reveal superior precision-recall characteristics and robustness against both viewpoint and appearance variations for the proposed approach over the state of the art. By analyzing the feature encoding process of our approach, we provide insights into what makes an image presentation robust against external variations.","PeriodicalId":6658,"journal":{"name":"2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","volume":"44 1","pages":"9-16"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"114","resultStr":"{\"title\":\"Only look once, mining distinctive landmarks from ConvNet for visual place recognition\",\"authors\":\"Zetao Chen, Fabiola Maffra, Inkyu Sa, M. Chli\",\"doi\":\"10.1109/IROS.2017.8202131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, image representations derived from Convolutional Neural Networks (CNNs) have been demonstrated to achieve impressive performance on a wide variety of tasks, including place recognition. In this paper, we take a step deeper into the internal structure of CNNs and propose novel CNN-based image features for place recognition by identifying salient regions and creating their regional representations directly from the convolutional layer activations. A range of experiments is conducted on challenging datasets with varied conditions and viewpoints. These reveal superior precision-recall characteristics and robustness against both viewpoint and appearance variations for the proposed approach over the state of the art. By analyzing the feature encoding process of our approach, we provide insights into what makes an image presentation robust against external variations.\",\"PeriodicalId\":6658,\"journal\":{\"name\":\"2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)\",\"volume\":\"44 1\",\"pages\":\"9-16\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"114\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.2017.8202131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2017.8202131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Only look once, mining distinctive landmarks from ConvNet for visual place recognition
Recently, image representations derived from Convolutional Neural Networks (CNNs) have been demonstrated to achieve impressive performance on a wide variety of tasks, including place recognition. In this paper, we take a step deeper into the internal structure of CNNs and propose novel CNN-based image features for place recognition by identifying salient regions and creating their regional representations directly from the convolutional layer activations. A range of experiments is conducted on challenging datasets with varied conditions and viewpoints. These reveal superior precision-recall characteristics and robustness against both viewpoint and appearance variations for the proposed approach over the state of the art. By analyzing the feature encoding process of our approach, we provide insights into what makes an image presentation robust against external variations.