基于分数梯度下降的FIR缺失模型辅助模型算法

Jia-Wei Tang
{"title":"基于分数梯度下降的FIR缺失模型辅助模型算法","authors":"Jia-Wei Tang","doi":"10.1155/2023/7527478","DOIUrl":null,"url":null,"abstract":"This study proposes a fractional gradient descent (FGD) algorithm for FIR models with missing data. By using the auxiliary model method, the missing data can be obtained. Then, the FGD algorithm is applied to update the parameters of the FIR models. Because of the fractional term in the conventional GD algorithm, the convergence rates of the GD algorithm can be increased. In addition, to avoid the step-size calculation, an Aitken FGD-based auxiliary model algorithm is also introduced. The convergence analysis and simulation examples are provided to show the effectiveness of the proposed algorithms.","PeriodicalId":72654,"journal":{"name":"Complex psychiatry","volume":"79 1","pages":"7527478:1-7527478:12"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fractional Gradient Descent-Based Auxiliary Model Algorithm for FIR Models with Missing Data\",\"authors\":\"Jia-Wei Tang\",\"doi\":\"10.1155/2023/7527478\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study proposes a fractional gradient descent (FGD) algorithm for FIR models with missing data. By using the auxiliary model method, the missing data can be obtained. Then, the FGD algorithm is applied to update the parameters of the FIR models. Because of the fractional term in the conventional GD algorithm, the convergence rates of the GD algorithm can be increased. In addition, to avoid the step-size calculation, an Aitken FGD-based auxiliary model algorithm is also introduced. The convergence analysis and simulation examples are provided to show the effectiveness of the proposed algorithms.\",\"PeriodicalId\":72654,\"journal\":{\"name\":\"Complex psychiatry\",\"volume\":\"79 1\",\"pages\":\"7527478:1-7527478:12\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex psychiatry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/7527478\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex psychiatry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/7527478","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种分数梯度下降(FGD)算法,用于数据缺失的FIR模型。利用辅助模型法,可以得到缺失的数据。然后,应用FGD算法对FIR模型参数进行更新。由于传统遗传算法中存在分数阶项,使得遗传算法的收敛速度得到提高。此外,为了避免步长计算,还引入了一种基于Aitken fgd的辅助模型算法。通过收敛性分析和仿真算例验证了所提算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fractional Gradient Descent-Based Auxiliary Model Algorithm for FIR Models with Missing Data
This study proposes a fractional gradient descent (FGD) algorithm for FIR models with missing data. By using the auxiliary model method, the missing data can be obtained. Then, the FGD algorithm is applied to update the parameters of the FIR models. Because of the fractional term in the conventional GD algorithm, the convergence rates of the GD algorithm can be increased. In addition, to avoid the step-size calculation, an Aitken FGD-based auxiliary model algorithm is also introduced. The convergence analysis and simulation examples are provided to show the effectiveness of the proposed algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信