{"title":"高双折射多孔芯光子晶体光纤保偏振太赫兹波导引的构想","authors":"Izaddeen Kabir Yakasai, P. E. Abas, F. Begum","doi":"10.1109/ICP46580.2020.9206490","DOIUrl":null,"url":null,"abstract":"A highly birefringent photonic crystal fibre with elliptical air holes in the core has been proposed and simulated for terahertz wave propagation. Using finite element method with anti-reflective perfectly matched layer, it is shown that the three elliptical air holes in the core are sufficient to produce extremely high birefringence, high power fraction and low transmission losses.","PeriodicalId":6758,"journal":{"name":"2020 IEEE 8th International Conference on Photonics (ICP)","volume":"68 1","pages":"60-61"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proposal of Highly Birefringent Porous Core Photonic Crystal Fibre for Polarisation Maintaining Terahertz Wave Guidance\",\"authors\":\"Izaddeen Kabir Yakasai, P. E. Abas, F. Begum\",\"doi\":\"10.1109/ICP46580.2020.9206490\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A highly birefringent photonic crystal fibre with elliptical air holes in the core has been proposed and simulated for terahertz wave propagation. Using finite element method with anti-reflective perfectly matched layer, it is shown that the three elliptical air holes in the core are sufficient to produce extremely high birefringence, high power fraction and low transmission losses.\",\"PeriodicalId\":6758,\"journal\":{\"name\":\"2020 IEEE 8th International Conference on Photonics (ICP)\",\"volume\":\"68 1\",\"pages\":\"60-61\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 8th International Conference on Photonics (ICP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICP46580.2020.9206490\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 8th International Conference on Photonics (ICP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICP46580.2020.9206490","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Proposal of Highly Birefringent Porous Core Photonic Crystal Fibre for Polarisation Maintaining Terahertz Wave Guidance
A highly birefringent photonic crystal fibre with elliptical air holes in the core has been proposed and simulated for terahertz wave propagation. Using finite element method with anti-reflective perfectly matched layer, it is shown that the three elliptical air holes in the core are sufficient to produce extremely high birefringence, high power fraction and low transmission losses.