{"title":"对:赫克代数,有限一般线性群,和海森堡分类的勘误","authors":"Anthony M. Licata, Alistair Savage","doi":"10.4171/QT/37","DOIUrl":null,"url":null,"abstract":"We define a category of planar diagrams whose Grothendieck group contains an integral version of the infinite rank Heisenberg algebra, thus yielding a categorification of this algebra. Our category, which is a q-deformation of one defined by Khovanov, acts naturally on the categories of modules for Hecke algebras of typeA and finite general linear groups. In this way, we obtain a categorification of the bosonic Fock space. We also develop the theory of parabolic induction and restriction functors for finite groups and prove general results on biadjointness and cyclicity in this setting. Mathematics Subject Classification (2010). Primary: 20C08, 17B65; Secondary: 16D90.","PeriodicalId":51331,"journal":{"name":"Quantum Topology","volume":"60 1","pages":"183-183"},"PeriodicalIF":1.0000,"publicationDate":"2011-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":"{\"title\":\"Erratum to: Hecke algebras, finite general linear groups, and Heisenberg categorification\",\"authors\":\"Anthony M. Licata, Alistair Savage\",\"doi\":\"10.4171/QT/37\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We define a category of planar diagrams whose Grothendieck group contains an integral version of the infinite rank Heisenberg algebra, thus yielding a categorification of this algebra. Our category, which is a q-deformation of one defined by Khovanov, acts naturally on the categories of modules for Hecke algebras of typeA and finite general linear groups. In this way, we obtain a categorification of the bosonic Fock space. We also develop the theory of parabolic induction and restriction functors for finite groups and prove general results on biadjointness and cyclicity in this setting. Mathematics Subject Classification (2010). Primary: 20C08, 17B65; Secondary: 16D90.\",\"PeriodicalId\":51331,\"journal\":{\"name\":\"Quantum Topology\",\"volume\":\"60 1\",\"pages\":\"183-183\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2011-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"46\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Topology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/QT/37\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Topology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/QT/37","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Erratum to: Hecke algebras, finite general linear groups, and Heisenberg categorification
We define a category of planar diagrams whose Grothendieck group contains an integral version of the infinite rank Heisenberg algebra, thus yielding a categorification of this algebra. Our category, which is a q-deformation of one defined by Khovanov, acts naturally on the categories of modules for Hecke algebras of typeA and finite general linear groups. In this way, we obtain a categorification of the bosonic Fock space. We also develop the theory of parabolic induction and restriction functors for finite groups and prove general results on biadjointness and cyclicity in this setting. Mathematics Subject Classification (2010). Primary: 20C08, 17B65; Secondary: 16D90.
期刊介绍:
Quantum Topology is a peer reviewed journal dedicated to publishing original research articles, short communications, and surveys in quantum topology and related areas of mathematics. Topics covered include in particular:
Low-dimensional Topology
Knot Theory
Jones Polynomial and Khovanov Homology
Topological Quantum Field Theory
Quantum Groups and Hopf Algebras
Mapping Class Groups and Teichmüller space
Categorification
Braid Groups and Braided Categories
Fusion Categories
Subfactors and Planar Algebras
Contact and Symplectic Topology
Topological Methods in Physics.