海马情景记忆识别的深度学习方法

T. Kuremoto
{"title":"海马情景记忆识别的深度学习方法","authors":"T. Kuremoto","doi":"10.18103/IMR.V7I1.915","DOIUrl":null,"url":null,"abstract":"Hippocampus plays an important role in processing episodic memory. The different patterns of multi-unit activity (MUA) of CA1 neurons in hippocampus corresponds to the different high order functions of the brain such as memory, association, planning, action decision, etc. In this paper, a deep learning model, which is a composition of convolutional neural network (CNN) and support vector machine (SVM), is adopted to classify 4 kinds of episodic memories of a male rat: restraint stress (restraint), contact with a female rat (female), contact with a male rat (male), and contact with a novel object (object). In addition, the characteristic patterns of the different events occurred in CA1 neurons are specified by the feature explanation of CNN using Grad-CAM. As the result, this study suggests that it is available to recognize episodic memories by MUA signals and vice versa.","PeriodicalId":91699,"journal":{"name":"Internal medicine review (Washington, D.C. : Online)","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Episodic memory recognition of the hippocampus using a deep learning method\",\"authors\":\"T. Kuremoto\",\"doi\":\"10.18103/IMR.V7I1.915\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hippocampus plays an important role in processing episodic memory. The different patterns of multi-unit activity (MUA) of CA1 neurons in hippocampus corresponds to the different high order functions of the brain such as memory, association, planning, action decision, etc. In this paper, a deep learning model, which is a composition of convolutional neural network (CNN) and support vector machine (SVM), is adopted to classify 4 kinds of episodic memories of a male rat: restraint stress (restraint), contact with a female rat (female), contact with a male rat (male), and contact with a novel object (object). In addition, the characteristic patterns of the different events occurred in CA1 neurons are specified by the feature explanation of CNN using Grad-CAM. As the result, this study suggests that it is available to recognize episodic memories by MUA signals and vice versa.\",\"PeriodicalId\":91699,\"journal\":{\"name\":\"Internal medicine review (Washington, D.C. : Online)\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Internal medicine review (Washington, D.C. : Online)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18103/IMR.V7I1.915\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internal medicine review (Washington, D.C. : Online)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18103/IMR.V7I1.915","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

海马体在情景记忆加工过程中起着重要作用。海马区CA1神经元不同的多单元活动模式对应着大脑不同的高阶功能,如记忆、联想、计划、行动决策等。本文采用卷积神经网络(CNN)和支持向量机(SVM)组成的深度学习模型,对雄性大鼠的约束应激(restraint)、与雌性大鼠接触(female)、与雄性大鼠接触(male)、与新奇物体接触(object) 4种情景记忆进行分类。此外,CA1神经元中发生的不同事件的特征模式通过CNN使用Grad-CAM的特征解释来指定。因此,本研究表明,通过MUA信号识别情景记忆是可行的,反之亦然。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Episodic memory recognition of the hippocampus using a deep learning method
Hippocampus plays an important role in processing episodic memory. The different patterns of multi-unit activity (MUA) of CA1 neurons in hippocampus corresponds to the different high order functions of the brain such as memory, association, planning, action decision, etc. In this paper, a deep learning model, which is a composition of convolutional neural network (CNN) and support vector machine (SVM), is adopted to classify 4 kinds of episodic memories of a male rat: restraint stress (restraint), contact with a female rat (female), contact with a male rat (male), and contact with a novel object (object). In addition, the characteristic patterns of the different events occurred in CA1 neurons are specified by the feature explanation of CNN using Grad-CAM. As the result, this study suggests that it is available to recognize episodic memories by MUA signals and vice versa.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信