摩尔斯族和狄拉克系

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
M. B. Liñán, Hernán Cendra, Eduardo García Toraño, D. M. Diego
{"title":"摩尔斯族和狄拉克系","authors":"M. B. Liñán, Hernán Cendra, Eduardo García Toraño, D. M. Diego","doi":"10.3934/jgm.2019024","DOIUrl":null,"url":null,"abstract":"Dirac structures and Morse families are used to obtain a geometric formalism that unifies most of the scenarios in mechanics (constrained calculus, nonholonomic systems, optimal control theory, higher-order mechanics, etc.), as the examples in the paper show. This approach generalizes the previous results on Dirac structures associated with Lagrangian submanifolds. An integrability algorithm in the sense of Mendela, Marmo and Tulczyjew is described for the generalized Dirac dynamical systems under study to determine the set where the implicit differential equations have solutions.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2018-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Morse families and Dirac systems\",\"authors\":\"M. B. Liñán, Hernán Cendra, Eduardo García Toraño, D. M. Diego\",\"doi\":\"10.3934/jgm.2019024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dirac structures and Morse families are used to obtain a geometric formalism that unifies most of the scenarios in mechanics (constrained calculus, nonholonomic systems, optimal control theory, higher-order mechanics, etc.), as the examples in the paper show. This approach generalizes the previous results on Dirac structures associated with Lagrangian submanifolds. An integrability algorithm in the sense of Mendela, Marmo and Tulczyjew is described for the generalized Dirac dynamical systems under study to determine the set where the implicit differential equations have solutions.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2018-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/jgm.2019024\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/jgm.2019024","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 11

摘要

用Dirac结构和Morse族得到了一种几何形式,它统一了力学中的大多数情形(约束微积分、非完整系统、最优控制理论、高阶力学等),如文中的例子所示。这种方法推广了前人关于狄拉克结构与拉格朗日子流形相关的研究结果。对于所研究的广义狄拉克动力系统,给出了一种Mendela、Marmo和Tulczyjew意义上的可积算法,用于确定隐式微分方程的解集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Morse families and Dirac systems
Dirac structures and Morse families are used to obtain a geometric formalism that unifies most of the scenarios in mechanics (constrained calculus, nonholonomic systems, optimal control theory, higher-order mechanics, etc.), as the examples in the paper show. This approach generalizes the previous results on Dirac structures associated with Lagrangian submanifolds. An integrability algorithm in the sense of Mendela, Marmo and Tulczyjew is described for the generalized Dirac dynamical systems under study to determine the set where the implicit differential equations have solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信