Yifei Wang, Shuting Li, Jing Chen, Hai-ying Zhu, B. Harsh, D. Boler, A. Dilger, D. Shike, S. Suman
{"title":"超营养补充维生素E影响死后牛肉腰最长肌肌红蛋白翻译后修饰","authors":"Yifei Wang, Shuting Li, Jing Chen, Hai-ying Zhu, B. Harsh, D. Boler, A. Dilger, D. Shike, S. Suman","doi":"10.22175/mmb.13541","DOIUrl":null,"url":null,"abstract":"Post-translational modifications (PTM) in myoglobin (Mb) can influence fresh meat color stability. Dietary supplementation of vitamin E improves beef color stability by delaying lipid oxidation–induced Mb oxidation and influences proteome profile of postmortem beef skeletal muscles. Nonetheless, the influence of vitamin E on Mb PTM in postmortem beef skeletal muscles has yet to be investigated. Therefore, the objective of the current study was to examine the effect of dietary vitamin E on Mb PTM in postmortem beef longissimus lumborum muscle. Beef longissimus lumborum muscle samples (24 h postmortem) were obtained from the carcasses of 9 vitamin E–supplemented (VITE; 1,000 IU vitamin E diet/heifer·d−1for 89 d) and 9 control (CONT; no supplemental vitamin E) heifers. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis was used to separate Mb from other sarcoplasmic proteins of beef longissimus lumborum muscle. Tandem mass spectrometry identified multiple PTM (phosphorylation, acetylation, 4-hydroxynonenalalkylation, methylation, dimethylation, trimethylation, and carboxymethylation) in the protein bands (17 kDa) representing Mb. The amino acids susceptible to phosphorylation were threonine (T) and tyrosine (Y), whereas lysine (K) residues were prone to other PTM. The same sites of phosphorylation (T34, T67, Y103), carboxymethylation (K77, K78), and 4-hydroxynonenal alkylation (K77, K78, K79) were identified in Mb from CONT and VITE samples, indicating that these PTM were not influenced by the vitamin E supplementation in cattle. Nonetheless, differential occurrence of acetylation, methylation, dimethylation, and trimethylation were identified in Mb from CONT and VITE samples. Overall, a greater number of amino acids were modified in CONT than VITE, suggesting that the supplementation of vitamin E decreased thenumbers of post-translationally modified residues in Mb. Additionally, PTM at K87, K96, K98, and K102 were unique to CONT, whereas PTM at K118 were unique to VITE. These findings suggested that dietary supplementation of vitamin E in beef cattle might protect amino acid residues in Mb—especially those located spatially close to proximal histidine—from undergoing PTM, thereby improving Mb redox stability.","PeriodicalId":18316,"journal":{"name":"Meat and Muscle Biology","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Supranutritional Supplementation of Vitamin E Influences Myoglobin Post-Translational Modifications in Postmortem Beef Longissimus Lumborum Muscle\",\"authors\":\"Yifei Wang, Shuting Li, Jing Chen, Hai-ying Zhu, B. Harsh, D. Boler, A. Dilger, D. Shike, S. Suman\",\"doi\":\"10.22175/mmb.13541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Post-translational modifications (PTM) in myoglobin (Mb) can influence fresh meat color stability. Dietary supplementation of vitamin E improves beef color stability by delaying lipid oxidation–induced Mb oxidation and influences proteome profile of postmortem beef skeletal muscles. Nonetheless, the influence of vitamin E on Mb PTM in postmortem beef skeletal muscles has yet to be investigated. Therefore, the objective of the current study was to examine the effect of dietary vitamin E on Mb PTM in postmortem beef longissimus lumborum muscle. Beef longissimus lumborum muscle samples (24 h postmortem) were obtained from the carcasses of 9 vitamin E–supplemented (VITE; 1,000 IU vitamin E diet/heifer·d−1for 89 d) and 9 control (CONT; no supplemental vitamin E) heifers. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis was used to separate Mb from other sarcoplasmic proteins of beef longissimus lumborum muscle. Tandem mass spectrometry identified multiple PTM (phosphorylation, acetylation, 4-hydroxynonenalalkylation, methylation, dimethylation, trimethylation, and carboxymethylation) in the protein bands (17 kDa) representing Mb. The amino acids susceptible to phosphorylation were threonine (T) and tyrosine (Y), whereas lysine (K) residues were prone to other PTM. The same sites of phosphorylation (T34, T67, Y103), carboxymethylation (K77, K78), and 4-hydroxynonenal alkylation (K77, K78, K79) were identified in Mb from CONT and VITE samples, indicating that these PTM were not influenced by the vitamin E supplementation in cattle. Nonetheless, differential occurrence of acetylation, methylation, dimethylation, and trimethylation were identified in Mb from CONT and VITE samples. Overall, a greater number of amino acids were modified in CONT than VITE, suggesting that the supplementation of vitamin E decreased thenumbers of post-translationally modified residues in Mb. Additionally, PTM at K87, K96, K98, and K102 were unique to CONT, whereas PTM at K118 were unique to VITE. These findings suggested that dietary supplementation of vitamin E in beef cattle might protect amino acid residues in Mb—especially those located spatially close to proximal histidine—from undergoing PTM, thereby improving Mb redox stability.\",\"PeriodicalId\":18316,\"journal\":{\"name\":\"Meat and Muscle Biology\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Meat and Muscle Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22175/mmb.13541\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meat and Muscle Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22175/mmb.13541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Supranutritional Supplementation of Vitamin E Influences Myoglobin Post-Translational Modifications in Postmortem Beef Longissimus Lumborum Muscle
Post-translational modifications (PTM) in myoglobin (Mb) can influence fresh meat color stability. Dietary supplementation of vitamin E improves beef color stability by delaying lipid oxidation–induced Mb oxidation and influences proteome profile of postmortem beef skeletal muscles. Nonetheless, the influence of vitamin E on Mb PTM in postmortem beef skeletal muscles has yet to be investigated. Therefore, the objective of the current study was to examine the effect of dietary vitamin E on Mb PTM in postmortem beef longissimus lumborum muscle. Beef longissimus lumborum muscle samples (24 h postmortem) were obtained from the carcasses of 9 vitamin E–supplemented (VITE; 1,000 IU vitamin E diet/heifer·d−1for 89 d) and 9 control (CONT; no supplemental vitamin E) heifers. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis was used to separate Mb from other sarcoplasmic proteins of beef longissimus lumborum muscle. Tandem mass spectrometry identified multiple PTM (phosphorylation, acetylation, 4-hydroxynonenalalkylation, methylation, dimethylation, trimethylation, and carboxymethylation) in the protein bands (17 kDa) representing Mb. The amino acids susceptible to phosphorylation were threonine (T) and tyrosine (Y), whereas lysine (K) residues were prone to other PTM. The same sites of phosphorylation (T34, T67, Y103), carboxymethylation (K77, K78), and 4-hydroxynonenal alkylation (K77, K78, K79) were identified in Mb from CONT and VITE samples, indicating that these PTM were not influenced by the vitamin E supplementation in cattle. Nonetheless, differential occurrence of acetylation, methylation, dimethylation, and trimethylation were identified in Mb from CONT and VITE samples. Overall, a greater number of amino acids were modified in CONT than VITE, suggesting that the supplementation of vitamin E decreased thenumbers of post-translationally modified residues in Mb. Additionally, PTM at K87, K96, K98, and K102 were unique to CONT, whereas PTM at K118 were unique to VITE. These findings suggested that dietary supplementation of vitamin E in beef cattle might protect amino acid residues in Mb—especially those located spatially close to proximal histidine—from undergoing PTM, thereby improving Mb redox stability.