{"title":"之字形-之字形五石墨烯纳米带的电子、磁性和自旋极化输运性质","authors":"N. Tien, N. T. Tuan, Pham Thi Bich Thao","doi":"10.15625/0868-3166/15843","DOIUrl":null,"url":null,"abstract":"Electronic, magnetic and spin-polarized transport properties of the zigzag-zigzag pentagraphene nanoribbon are investigated theoretically within the framework of density functional theory combined with non-equilibrium Green’s function formalism. It is found that the spinunpolarized ZZ-PGNR behaves as metal. However, the spin-polarized ZZ-PGNRs show to be the magnetic semiconductor properties. More importantly, for the ZZ-PGNRs based device, the spin-filtering effect occurs strongly near Fermi level. Our findings suggest that ZZ-PGNRs might hold a significant promise for developing spintronic devices.","PeriodicalId":10571,"journal":{"name":"Communications in Physics","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electronic, Magnetic and Spin-polarized Transport Properties of the Zigzag-Zigzag Penta-graphene Nanoribbon\",\"authors\":\"N. Tien, N. T. Tuan, Pham Thi Bich Thao\",\"doi\":\"10.15625/0868-3166/15843\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electronic, magnetic and spin-polarized transport properties of the zigzag-zigzag pentagraphene nanoribbon are investigated theoretically within the framework of density functional theory combined with non-equilibrium Green’s function formalism. It is found that the spinunpolarized ZZ-PGNR behaves as metal. However, the spin-polarized ZZ-PGNRs show to be the magnetic semiconductor properties. More importantly, for the ZZ-PGNRs based device, the spin-filtering effect occurs strongly near Fermi level. Our findings suggest that ZZ-PGNRs might hold a significant promise for developing spintronic devices.\",\"PeriodicalId\":10571,\"journal\":{\"name\":\"Communications in Physics\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15625/0868-3166/15843\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15625/0868-3166/15843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Electronic, Magnetic and Spin-polarized Transport Properties of the Zigzag-Zigzag Penta-graphene Nanoribbon
Electronic, magnetic and spin-polarized transport properties of the zigzag-zigzag pentagraphene nanoribbon are investigated theoretically within the framework of density functional theory combined with non-equilibrium Green’s function formalism. It is found that the spinunpolarized ZZ-PGNR behaves as metal. However, the spin-polarized ZZ-PGNRs show to be the magnetic semiconductor properties. More importantly, for the ZZ-PGNRs based device, the spin-filtering effect occurs strongly near Fermi level. Our findings suggest that ZZ-PGNRs might hold a significant promise for developing spintronic devices.