正弦压力下粘流体和环管内广义Burgers模型流体的精确MHD通量解

Hanan Qasim
{"title":"正弦压力下粘流体和环管内广义Burgers模型流体的精确MHD通量解","authors":"Hanan Qasim","doi":"10.30526/31.1.1840","DOIUrl":null,"url":null,"abstract":"The aim of this work presents the analytical studies of both the magnetohydrodynamic (MHD) flux and flow of the non-magnetohydro dynamic (MHD) for a fluid of generalized Burgers’ (GB) withinan annular pipe submitted under Sinusoidal  Pressure (SP)gradient. Closed beginning velocity's' solutions are taken by performing the finite Hankel transform (FHT) and Laplace transform (LT) of the successivefraction derivatives. Lastly, the figures were planned to exhibition the transformations effects of different fractional parameters (DFP) on the profile of velocity of both flows.","PeriodicalId":13236,"journal":{"name":"Ibn Al-Haitham Journal For Pure And Applied Science","volume":"20 1","pages":"203-211"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Accurate MHD Flux Solutions of a Viscose Fluid and Generalized Burgers' Model fluxwithin an Annular Pipe Under Sinusoidal Pressure\",\"authors\":\"Hanan Qasim\",\"doi\":\"10.30526/31.1.1840\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this work presents the analytical studies of both the magnetohydrodynamic (MHD) flux and flow of the non-magnetohydro dynamic (MHD) for a fluid of generalized Burgers’ (GB) withinan annular pipe submitted under Sinusoidal  Pressure (SP)gradient. Closed beginning velocity's' solutions are taken by performing the finite Hankel transform (FHT) and Laplace transform (LT) of the successivefraction derivatives. Lastly, the figures were planned to exhibition the transformations effects of different fractional parameters (DFP) on the profile of velocity of both flows.\",\"PeriodicalId\":13236,\"journal\":{\"name\":\"Ibn Al-Haitham Journal For Pure And Applied Science\",\"volume\":\"20 1\",\"pages\":\"203-211\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ibn Al-Haitham Journal For Pure And Applied Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30526/31.1.1840\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ibn Al-Haitham Journal For Pure And Applied Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30526/31.1.1840","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了正弦压力梯度下环管内广义Burgers流体的磁流体动力学(MHD)通量和非磁流体动力学(MHD)流动。通过对连续分数阶导数进行有限汉克尔变换(FHT)和拉普拉斯变换(LT),得到闭初速度的解。最后,设计了不同分数参数(DFP)对两种流动速度分布的变换效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Accurate MHD Flux Solutions of a Viscose Fluid and Generalized Burgers' Model fluxwithin an Annular Pipe Under Sinusoidal Pressure
The aim of this work presents the analytical studies of both the magnetohydrodynamic (MHD) flux and flow of the non-magnetohydro dynamic (MHD) for a fluid of generalized Burgers’ (GB) withinan annular pipe submitted under Sinusoidal  Pressure (SP)gradient. Closed beginning velocity's' solutions are taken by performing the finite Hankel transform (FHT) and Laplace transform (LT) of the successivefraction derivatives. Lastly, the figures were planned to exhibition the transformations effects of different fractional parameters (DFP) on the profile of velocity of both flows.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信