在可重构硬件和gpu中的快速并行音频指纹识别实现

J. Martínez, Jaime Vitola, Adriana Sanabria, C. Pedraza
{"title":"在可重构硬件和gpu中的快速并行音频指纹识别实现","authors":"J. Martínez, Jaime Vitola, Adriana Sanabria, C. Pedraza","doi":"10.1109/SPL.2011.5782656","DOIUrl":null,"url":null,"abstract":"One of the main challenges that Music Information Retrieval (MIR) faces is performance. This paper presents an algorithm based on fingerprinting techniques implemented in a low-cost embedded reconfigurable platform. This fast algorithm is even faster when implemented in parallel for a GPU platform. The hit rate of the implementations is practically 100% and the response time is two times faster than the response time of a top class PC, which means MIR times of up to 65 audio tracks in real time.","PeriodicalId":6329,"journal":{"name":"2011 VII Southern Conference on Programmable Logic (SPL)","volume":"81 1","pages":"245-250"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Fast parallel audio fingerprinting implementation in reconfigurable hardware and GPUs\",\"authors\":\"J. Martínez, Jaime Vitola, Adriana Sanabria, C. Pedraza\",\"doi\":\"10.1109/SPL.2011.5782656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the main challenges that Music Information Retrieval (MIR) faces is performance. This paper presents an algorithm based on fingerprinting techniques implemented in a low-cost embedded reconfigurable platform. This fast algorithm is even faster when implemented in parallel for a GPU platform. The hit rate of the implementations is practically 100% and the response time is two times faster than the response time of a top class PC, which means MIR times of up to 65 audio tracks in real time.\",\"PeriodicalId\":6329,\"journal\":{\"name\":\"2011 VII Southern Conference on Programmable Logic (SPL)\",\"volume\":\"81 1\",\"pages\":\"245-250\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 VII Southern Conference on Programmable Logic (SPL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPL.2011.5782656\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 VII Southern Conference on Programmable Logic (SPL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPL.2011.5782656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

音乐信息检索(MIR)面临的主要挑战之一是性能问题。提出了一种在低成本嵌入式可重构平台上实现的基于指纹识别技术的算法。这种快速算法在GPU平台上并行实现时甚至更快。实现的命中率几乎是100%,响应时间比顶级PC的响应时间快两倍,这意味着实时多达65个音轨的MIR时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast parallel audio fingerprinting implementation in reconfigurable hardware and GPUs
One of the main challenges that Music Information Retrieval (MIR) faces is performance. This paper presents an algorithm based on fingerprinting techniques implemented in a low-cost embedded reconfigurable platform. This fast algorithm is even faster when implemented in parallel for a GPU platform. The hit rate of the implementations is practically 100% and the response time is two times faster than the response time of a top class PC, which means MIR times of up to 65 audio tracks in real time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信