组织病理学中的深度学习:综述

IF 6.4 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
S. Banerji, S. Mitra
{"title":"组织病理学中的深度学习:综述","authors":"S. Banerji, S. Mitra","doi":"10.1002/widm.1439","DOIUrl":null,"url":null,"abstract":"Histopathology is diagnosis based on visual examination of tissue sections under a microscope. With the growing number of digitally scanned tissue slide images, computer‐based segmentation and classification of these images is a high‐demand area of research. Convolutional neural networks (CNNs) constitute the most popular classification architecture for a variety of image classification problems. However, applying CNNs to histology slides is not a trivial task and has several challenges, ranging from variations in the colors of slides to excessive high resolution and lack of proper labeling. In this advanced review, we introduce the application of CNN‐based architectures to digital histological image analysis, discuss some problems associated with such analysis, and look at possible solutions.","PeriodicalId":48970,"journal":{"name":"Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery","volume":"127 1","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2021-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Deep learning in histopathology: A review\",\"authors\":\"S. Banerji, S. Mitra\",\"doi\":\"10.1002/widm.1439\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Histopathology is diagnosis based on visual examination of tissue sections under a microscope. With the growing number of digitally scanned tissue slide images, computer‐based segmentation and classification of these images is a high‐demand area of research. Convolutional neural networks (CNNs) constitute the most popular classification architecture for a variety of image classification problems. However, applying CNNs to histology slides is not a trivial task and has several challenges, ranging from variations in the colors of slides to excessive high resolution and lack of proper labeling. In this advanced review, we introduce the application of CNN‐based architectures to digital histological image analysis, discuss some problems associated with such analysis, and look at possible solutions.\",\"PeriodicalId\":48970,\"journal\":{\"name\":\"Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery\",\"volume\":\"127 1\",\"pages\":\"\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2021-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1002/widm.1439\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/widm.1439","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 15

摘要

组织病理学是基于显微镜下组织切片的视觉检查的诊断。随着数字扫描组织切片图像数量的增加,基于计算机的图像分割和分类是一个高需求的研究领域。卷积神经网络(cnn)构成了各种图像分类问题中最流行的分类架构。然而,将cnn应用于组织学切片并不是一项微不足道的任务,并且存在一些挑战,从切片颜色的变化到过高的分辨率和缺乏适当的标记。在这篇高级综述中,我们介绍了基于CNN的架构在数字组织学图像分析中的应用,讨论了与此类分析相关的一些问题,并探讨了可能的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep learning in histopathology: A review
Histopathology is diagnosis based on visual examination of tissue sections under a microscope. With the growing number of digitally scanned tissue slide images, computer‐based segmentation and classification of these images is a high‐demand area of research. Convolutional neural networks (CNNs) constitute the most popular classification architecture for a variety of image classification problems. However, applying CNNs to histology slides is not a trivial task and has several challenges, ranging from variations in the colors of slides to excessive high resolution and lack of proper labeling. In this advanced review, we introduce the application of CNN‐based architectures to digital histological image analysis, discuss some problems associated with such analysis, and look at possible solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery
Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
22.70
自引率
2.60%
发文量
39
审稿时长
>12 weeks
期刊介绍: The goals of Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery (WIREs DMKD) are multifaceted. Firstly, the journal aims to provide a comprehensive overview of the current state of data mining and knowledge discovery by featuring ongoing reviews authored by leading researchers. Secondly, it seeks to highlight the interdisciplinary nature of the field by presenting articles from diverse perspectives, covering various application areas such as technology, business, healthcare, education, government, society, and culture. Thirdly, WIREs DMKD endeavors to keep pace with the rapid advancements in data mining and knowledge discovery through regular content updates. Lastly, the journal strives to promote active engagement in the field by presenting its accomplishments and challenges in an accessible manner to a broad audience. The content of WIREs DMKD is intended to benefit upper-level undergraduate and postgraduate students, teaching and research professors in academic programs, as well as scientists and research managers in industry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信