Md Atiqul Mollah, Wenqi Wang, Peyman Faizian, Md. Shafayat Rahman, Xin Yuan, S. Pakin, M. Lang
{"title":"建模通用全局自适应负载均衡路由","authors":"Md Atiqul Mollah, Wenqi Wang, Peyman Faizian, Md. Shafayat Rahman, Xin Yuan, S. Pakin, M. Lang","doi":"10.1145/3349620","DOIUrl":null,"url":null,"abstract":"Universal globally adaptive load-balanced (UGAL) routing has been proposed for various interconnection networks and has been deployed in a number of current-generation supercomputers. Although UGAL-based schemes have been extensively studied, most existing results are based on either simulation or measurement. Without a theoretical understanding of UGAL, multiple questions remain: For which traffic patterns is UGAL most suited? In addition, what determines the performance of the UGAL-based scheme on a particular network configuration? In this work, we develop a set of throughput models for UGALbased on linear programming. We show that the throughput models are valid across the torus, Dragonfly, and Slim Fly network topologies. Finally, we identify a robust model that can accurately and efficiently predict UGAL throughput for a set of representative traffic patterns across different topologies. Our models not only provide a mechanism to predict UGAL performance on large-scale interconnection networks but also reveal the inner working of UGAL and further our understanding of this type of routing.","PeriodicalId":42115,"journal":{"name":"ACM Transactions on Parallel Computing","volume":"47 1","pages":"9:1-9:23"},"PeriodicalIF":0.9000,"publicationDate":"2019-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Modeling Universal Globally Adaptive Load-Balanced Routing\",\"authors\":\"Md Atiqul Mollah, Wenqi Wang, Peyman Faizian, Md. Shafayat Rahman, Xin Yuan, S. Pakin, M. Lang\",\"doi\":\"10.1145/3349620\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Universal globally adaptive load-balanced (UGAL) routing has been proposed for various interconnection networks and has been deployed in a number of current-generation supercomputers. Although UGAL-based schemes have been extensively studied, most existing results are based on either simulation or measurement. Without a theoretical understanding of UGAL, multiple questions remain: For which traffic patterns is UGAL most suited? In addition, what determines the performance of the UGAL-based scheme on a particular network configuration? In this work, we develop a set of throughput models for UGALbased on linear programming. We show that the throughput models are valid across the torus, Dragonfly, and Slim Fly network topologies. Finally, we identify a robust model that can accurately and efficiently predict UGAL throughput for a set of representative traffic patterns across different topologies. Our models not only provide a mechanism to predict UGAL performance on large-scale interconnection networks but also reveal the inner working of UGAL and further our understanding of this type of routing.\",\"PeriodicalId\":42115,\"journal\":{\"name\":\"ACM Transactions on Parallel Computing\",\"volume\":\"47 1\",\"pages\":\"9:1-9:23\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2019-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Parallel Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3349620\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Parallel Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3349620","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Universal globally adaptive load-balanced (UGAL) routing has been proposed for various interconnection networks and has been deployed in a number of current-generation supercomputers. Although UGAL-based schemes have been extensively studied, most existing results are based on either simulation or measurement. Without a theoretical understanding of UGAL, multiple questions remain: For which traffic patterns is UGAL most suited? In addition, what determines the performance of the UGAL-based scheme on a particular network configuration? In this work, we develop a set of throughput models for UGALbased on linear programming. We show that the throughput models are valid across the torus, Dragonfly, and Slim Fly network topologies. Finally, we identify a robust model that can accurately and efficiently predict UGAL throughput for a set of representative traffic patterns across different topologies. Our models not only provide a mechanism to predict UGAL performance on large-scale interconnection networks but also reveal the inner working of UGAL and further our understanding of this type of routing.