STAT3信号在多囊肾病中的作用

Thomas Weimbs , Jeffrey J. Talbot
{"title":"STAT3信号在多囊肾病中的作用","authors":"Thomas Weimbs ,&nbsp;Jeffrey J. Talbot","doi":"10.1016/j.ddmec.2013.03.001","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Mutations in the gene coding for the integral membrane protein polycystin-1 (PC1) are the cause of most cases of autosomal-dominant polycystic kidney disease (ADPKD), a very common disease that leads to kidney failure and currently lacks approved treatment. Recent work has revealed that PC1 can regulate the transcription factor </span>STAT3, and that STAT3 is aberrantly activated in the kidneys of ADPKD patients and PKD mouse models. Recent approaches to directly inhibit STAT3 in PKD mouse models have been promising. Numerous </span>signaling pathways are known to activate STAT3 and many have long been implicated in the pathogenesis of PKD – such as EGF/EGFR, HGF/c-Met, Src. However, a role of STAT3 in the pathogenesis of PKD had never been considered until now. Here, we review the current findings that suggest that STAT3 is a promising target for the treatment of PKD.</p></div>","PeriodicalId":72843,"journal":{"name":"Drug discovery today. Disease mechanisms","volume":"10 3","pages":"Pages e113-e118"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ddmec.2013.03.001","citationCount":"27","resultStr":"{\"title\":\"STAT3 signaling in polycystic kidney disease\",\"authors\":\"Thomas Weimbs ,&nbsp;Jeffrey J. Talbot\",\"doi\":\"10.1016/j.ddmec.2013.03.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>Mutations in the gene coding for the integral membrane protein polycystin-1 (PC1) are the cause of most cases of autosomal-dominant polycystic kidney disease (ADPKD), a very common disease that leads to kidney failure and currently lacks approved treatment. Recent work has revealed that PC1 can regulate the transcription factor </span>STAT3, and that STAT3 is aberrantly activated in the kidneys of ADPKD patients and PKD mouse models. Recent approaches to directly inhibit STAT3 in PKD mouse models have been promising. Numerous </span>signaling pathways are known to activate STAT3 and many have long been implicated in the pathogenesis of PKD – such as EGF/EGFR, HGF/c-Met, Src. However, a role of STAT3 in the pathogenesis of PKD had never been considered until now. Here, we review the current findings that suggest that STAT3 is a promising target for the treatment of PKD.</p></div>\",\"PeriodicalId\":72843,\"journal\":{\"name\":\"Drug discovery today. Disease mechanisms\",\"volume\":\"10 3\",\"pages\":\"Pages e113-e118\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.ddmec.2013.03.001\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug discovery today. Disease mechanisms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1740676513000096\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug discovery today. Disease mechanisms","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1740676513000096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

整体膜蛋白多囊蛋白-1 (PC1)的基因编码突变是大多数常染色体显性多囊肾病(ADPKD)的原因,这是一种非常常见的导致肾衰竭的疾病,目前缺乏批准的治疗方法。最近的研究表明,PC1可以调节转录因子STAT3,并且STAT3在ADPKD患者和PKD小鼠模型的肾脏中异常激活。最近在PKD小鼠模型中直接抑制STAT3的方法很有希望。已知有许多信号通路可以激活STAT3,其中许多通路长期以来与PKD的发病机制有关,如EGF/EGFR, HGF/c-Met, Src。然而,STAT3在PKD发病机制中的作用直到现在才被考虑。在这里,我们回顾了目前的研究结果,表明STAT3是治疗PKD的一个有希望的靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
STAT3 signaling in polycystic kidney disease

Mutations in the gene coding for the integral membrane protein polycystin-1 (PC1) are the cause of most cases of autosomal-dominant polycystic kidney disease (ADPKD), a very common disease that leads to kidney failure and currently lacks approved treatment. Recent work has revealed that PC1 can regulate the transcription factor STAT3, and that STAT3 is aberrantly activated in the kidneys of ADPKD patients and PKD mouse models. Recent approaches to directly inhibit STAT3 in PKD mouse models have been promising. Numerous signaling pathways are known to activate STAT3 and many have long been implicated in the pathogenesis of PKD – such as EGF/EGFR, HGF/c-Met, Src. However, a role of STAT3 in the pathogenesis of PKD had never been considered until now. Here, we review the current findings that suggest that STAT3 is a promising target for the treatment of PKD.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信