基于直接能量沉积距离分类的支持向量机改进过程控制

IF 1 Q4 ENGINEERING, MANUFACTURING
Zoe Alexander, Nathaniel DeVol, Molly Emig, K. Saleeby, T. Feldhausen, Thomas Kurfess, Katherine Fu, Christopher Saldaña
{"title":"基于直接能量沉积距离分类的支持向量机改进过程控制","authors":"Zoe Alexander, Nathaniel DeVol, Molly Emig, K. Saleeby, T. Feldhausen, Thomas Kurfess, Katherine Fu, Christopher Saldaña","doi":"10.1115/msec2022-85382","DOIUrl":null,"url":null,"abstract":"\n A critical factor in the implementation of direct energy deposition is the ability to maintain the standoff distance between the nozzle and the build surface, as this influences powder capture efficiency and overall part quality. Due to process-related variations, layer height may vary, causing unintended variation in standoff distance and poor build quality. While prior work has utilized contact probing to qualify standoff distance during processing, in situ methods for qualification of standoff distance are of major interest. The present work seeks to understand efficacy of image-based methods for classifying standoff distance variation in real-time using support vector machines (SVMs). It was hypothesized that the size of the melt pool and the amount of spatter will have significant correlations with deviations in the standoff distance; thus, SVMs were used on a dataset that is comprised of morphological features of melt pool size and image entropy. The SVM model was used to classify melt pool images into categories according to standoff distance variation from nominal. K-folds cross validation was used to find the optimal hyperparameters for the SVM model. To understand the impact of the selected features on the classification performance and inference speed, multiple models were trained with differing numbers of included features. Results for classification score, inference time, and image preprocessing/feature extraction from these data are reported. The present results show that the SVM model was able to predict the standoff distance classification with an accuracy of 97 percent and a speed of 0.122 s per image, making it a viable solution for real-time control of standoff distance.","PeriodicalId":45459,"journal":{"name":"Journal of Micro and Nano-Manufacturing","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Support Vector Machines for Classification of Direct Energy Deposition Standoff Distance for Improved Process Control\",\"authors\":\"Zoe Alexander, Nathaniel DeVol, Molly Emig, K. Saleeby, T. Feldhausen, Thomas Kurfess, Katherine Fu, Christopher Saldaña\",\"doi\":\"10.1115/msec2022-85382\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n A critical factor in the implementation of direct energy deposition is the ability to maintain the standoff distance between the nozzle and the build surface, as this influences powder capture efficiency and overall part quality. Due to process-related variations, layer height may vary, causing unintended variation in standoff distance and poor build quality. While prior work has utilized contact probing to qualify standoff distance during processing, in situ methods for qualification of standoff distance are of major interest. The present work seeks to understand efficacy of image-based methods for classifying standoff distance variation in real-time using support vector machines (SVMs). It was hypothesized that the size of the melt pool and the amount of spatter will have significant correlations with deviations in the standoff distance; thus, SVMs were used on a dataset that is comprised of morphological features of melt pool size and image entropy. The SVM model was used to classify melt pool images into categories according to standoff distance variation from nominal. K-folds cross validation was used to find the optimal hyperparameters for the SVM model. To understand the impact of the selected features on the classification performance and inference speed, multiple models were trained with differing numbers of included features. Results for classification score, inference time, and image preprocessing/feature extraction from these data are reported. The present results show that the SVM model was able to predict the standoff distance classification with an accuracy of 97 percent and a speed of 0.122 s per image, making it a viable solution for real-time control of standoff distance.\",\"PeriodicalId\":45459,\"journal\":{\"name\":\"Journal of Micro and Nano-Manufacturing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Micro and Nano-Manufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/msec2022-85382\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micro and Nano-Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/msec2022-85382","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

实现直接能量沉积的一个关键因素是能够保持喷嘴和构建表面之间的距离,因为这影响粉末捕获效率和整体零件质量。由于过程相关的变化,层的高度可能会发生变化,导致非预期的距离变化和较差的构建质量。虽然以前的工作是利用接触探测来确定加工过程中的距离,但确定距离的原位方法是主要的兴趣。本研究旨在了解使用支持向量机(svm)实时分类对峙距离变化的基于图像的方法的有效性。假设熔池的大小和飞溅量与距离偏差有显著的相关性;因此,在由熔池大小和图像熵的形态特征组成的数据集上使用支持向量机。利用支持向量机模型对熔池图像进行分类,根据离标称距离的变化对熔池图像进行分类。采用k -fold交叉验证方法寻找支持向量机模型的最优超参数。为了了解所选特征对分类性能和推理速度的影响,使用不同数量的包含特征训练多个模型。报告了分类分数、推理时间和图像预处理/特征提取的结果。目前的研究结果表明,SVM模型能够以97%的准确率和0.122 s的速度预测每幅图像的距离分类,使其成为实时控制距离的可行方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Support Vector Machines for Classification of Direct Energy Deposition Standoff Distance for Improved Process Control
A critical factor in the implementation of direct energy deposition is the ability to maintain the standoff distance between the nozzle and the build surface, as this influences powder capture efficiency and overall part quality. Due to process-related variations, layer height may vary, causing unintended variation in standoff distance and poor build quality. While prior work has utilized contact probing to qualify standoff distance during processing, in situ methods for qualification of standoff distance are of major interest. The present work seeks to understand efficacy of image-based methods for classifying standoff distance variation in real-time using support vector machines (SVMs). It was hypothesized that the size of the melt pool and the amount of spatter will have significant correlations with deviations in the standoff distance; thus, SVMs were used on a dataset that is comprised of morphological features of melt pool size and image entropy. The SVM model was used to classify melt pool images into categories according to standoff distance variation from nominal. K-folds cross validation was used to find the optimal hyperparameters for the SVM model. To understand the impact of the selected features on the classification performance and inference speed, multiple models were trained with differing numbers of included features. Results for classification score, inference time, and image preprocessing/feature extraction from these data are reported. The present results show that the SVM model was able to predict the standoff distance classification with an accuracy of 97 percent and a speed of 0.122 s per image, making it a viable solution for real-time control of standoff distance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Micro and Nano-Manufacturing
Journal of Micro and Nano-Manufacturing ENGINEERING, MANUFACTURING-
CiteScore
2.70
自引率
0.00%
发文量
12
期刊介绍: The Journal of Micro and Nano-Manufacturing provides a forum for the rapid dissemination of original theoretical and applied research in the areas of micro- and nano-manufacturing that are related to process innovation, accuracy, and precision, throughput enhancement, material utilization, compact equipment development, environmental and life-cycle analysis, and predictive modeling of manufacturing processes with feature sizes less than one hundred micrometers. Papers addressing special needs in emerging areas, such as biomedical devices, drug manufacturing, water and energy, are also encouraged. Areas of interest including, but not limited to: Unit micro- and nano-manufacturing processes; Hybrid manufacturing processes combining bottom-up and top-down processes; Hybrid manufacturing processes utilizing various energy sources (optical, mechanical, electrical, solar, etc.) to achieve multi-scale features and resolution; High-throughput micro- and nano-manufacturing processes; Equipment development; Predictive modeling and simulation of materials and/or systems enabling point-of-need or scaled-up micro- and nano-manufacturing; Metrology at the micro- and nano-scales over large areas; Sensors and sensor integration; Design algorithms for multi-scale manufacturing; Life cycle analysis; Logistics and material handling related to micro- and nano-manufacturing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信