Zoe Alexander, Nathaniel DeVol, Molly Emig, K. Saleeby, T. Feldhausen, Thomas Kurfess, Katherine Fu, Christopher Saldaña
{"title":"基于直接能量沉积距离分类的支持向量机改进过程控制","authors":"Zoe Alexander, Nathaniel DeVol, Molly Emig, K. Saleeby, T. Feldhausen, Thomas Kurfess, Katherine Fu, Christopher Saldaña","doi":"10.1115/msec2022-85382","DOIUrl":null,"url":null,"abstract":"\n A critical factor in the implementation of direct energy deposition is the ability to maintain the standoff distance between the nozzle and the build surface, as this influences powder capture efficiency and overall part quality. Due to process-related variations, layer height may vary, causing unintended variation in standoff distance and poor build quality. While prior work has utilized contact probing to qualify standoff distance during processing, in situ methods for qualification of standoff distance are of major interest. The present work seeks to understand efficacy of image-based methods for classifying standoff distance variation in real-time using support vector machines (SVMs). It was hypothesized that the size of the melt pool and the amount of spatter will have significant correlations with deviations in the standoff distance; thus, SVMs were used on a dataset that is comprised of morphological features of melt pool size and image entropy. The SVM model was used to classify melt pool images into categories according to standoff distance variation from nominal. K-folds cross validation was used to find the optimal hyperparameters for the SVM model. To understand the impact of the selected features on the classification performance and inference speed, multiple models were trained with differing numbers of included features. Results for classification score, inference time, and image preprocessing/feature extraction from these data are reported. The present results show that the SVM model was able to predict the standoff distance classification with an accuracy of 97 percent and a speed of 0.122 s per image, making it a viable solution for real-time control of standoff distance.","PeriodicalId":45459,"journal":{"name":"Journal of Micro and Nano-Manufacturing","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Support Vector Machines for Classification of Direct Energy Deposition Standoff Distance for Improved Process Control\",\"authors\":\"Zoe Alexander, Nathaniel DeVol, Molly Emig, K. Saleeby, T. Feldhausen, Thomas Kurfess, Katherine Fu, Christopher Saldaña\",\"doi\":\"10.1115/msec2022-85382\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n A critical factor in the implementation of direct energy deposition is the ability to maintain the standoff distance between the nozzle and the build surface, as this influences powder capture efficiency and overall part quality. Due to process-related variations, layer height may vary, causing unintended variation in standoff distance and poor build quality. While prior work has utilized contact probing to qualify standoff distance during processing, in situ methods for qualification of standoff distance are of major interest. The present work seeks to understand efficacy of image-based methods for classifying standoff distance variation in real-time using support vector machines (SVMs). It was hypothesized that the size of the melt pool and the amount of spatter will have significant correlations with deviations in the standoff distance; thus, SVMs were used on a dataset that is comprised of morphological features of melt pool size and image entropy. The SVM model was used to classify melt pool images into categories according to standoff distance variation from nominal. K-folds cross validation was used to find the optimal hyperparameters for the SVM model. To understand the impact of the selected features on the classification performance and inference speed, multiple models were trained with differing numbers of included features. Results for classification score, inference time, and image preprocessing/feature extraction from these data are reported. The present results show that the SVM model was able to predict the standoff distance classification with an accuracy of 97 percent and a speed of 0.122 s per image, making it a viable solution for real-time control of standoff distance.\",\"PeriodicalId\":45459,\"journal\":{\"name\":\"Journal of Micro and Nano-Manufacturing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Micro and Nano-Manufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/msec2022-85382\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micro and Nano-Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/msec2022-85382","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Support Vector Machines for Classification of Direct Energy Deposition Standoff Distance for Improved Process Control
A critical factor in the implementation of direct energy deposition is the ability to maintain the standoff distance between the nozzle and the build surface, as this influences powder capture efficiency and overall part quality. Due to process-related variations, layer height may vary, causing unintended variation in standoff distance and poor build quality. While prior work has utilized contact probing to qualify standoff distance during processing, in situ methods for qualification of standoff distance are of major interest. The present work seeks to understand efficacy of image-based methods for classifying standoff distance variation in real-time using support vector machines (SVMs). It was hypothesized that the size of the melt pool and the amount of spatter will have significant correlations with deviations in the standoff distance; thus, SVMs were used on a dataset that is comprised of morphological features of melt pool size and image entropy. The SVM model was used to classify melt pool images into categories according to standoff distance variation from nominal. K-folds cross validation was used to find the optimal hyperparameters for the SVM model. To understand the impact of the selected features on the classification performance and inference speed, multiple models were trained with differing numbers of included features. Results for classification score, inference time, and image preprocessing/feature extraction from these data are reported. The present results show that the SVM model was able to predict the standoff distance classification with an accuracy of 97 percent and a speed of 0.122 s per image, making it a viable solution for real-time control of standoff distance.
期刊介绍:
The Journal of Micro and Nano-Manufacturing provides a forum for the rapid dissemination of original theoretical and applied research in the areas of micro- and nano-manufacturing that are related to process innovation, accuracy, and precision, throughput enhancement, material utilization, compact equipment development, environmental and life-cycle analysis, and predictive modeling of manufacturing processes with feature sizes less than one hundred micrometers. Papers addressing special needs in emerging areas, such as biomedical devices, drug manufacturing, water and energy, are also encouraged. Areas of interest including, but not limited to: Unit micro- and nano-manufacturing processes; Hybrid manufacturing processes combining bottom-up and top-down processes; Hybrid manufacturing processes utilizing various energy sources (optical, mechanical, electrical, solar, etc.) to achieve multi-scale features and resolution; High-throughput micro- and nano-manufacturing processes; Equipment development; Predictive modeling and simulation of materials and/or systems enabling point-of-need or scaled-up micro- and nano-manufacturing; Metrology at the micro- and nano-scales over large areas; Sensors and sensor integration; Design algorithms for multi-scale manufacturing; Life cycle analysis; Logistics and material handling related to micro- and nano-manufacturing.