{"title":"无模板聚苯胺胶体分散体纳米制备的多种方法","authors":"C. Barbero","doi":"10.3390/nanomanufacturing3010005","DOIUrl":null,"url":null,"abstract":"Different methods which could be used to produce colloidal dispersions of polyaniline (PANI) nano-objects without templates are described. While the methods are non-deterministic, different nano-objects (nanospheres, nanofibers, nanobelts, nanorice, nanotubes, nanorods, nanodisks, etc.) can be produced. Those most used are: (i) solution polymerization with steric stabilizers (SPS) to produce nanospheres, (ii) interfacial polymerization (IP) to produce nanofibers and (iii) solution polymerization in the presence of additives (SPA) to produce nanotubes. Oxidation of aniline in aqueous solution could produce nanotubes, nanofibers and other shapes by controlling mass transport/concentration of reactants, pH, and the presence of oligomers/additives. The different models proposed to explain the formation of various nano-objects are discussed. Mechanochemical polymerization (MCP) could produce nanofibers or nanospheres by controlling the aniline/oxidant ratio. PANI nanospheres of tunable sizes can also be produced by nanoprecipitation (NPT) of preformed PANI from its solutions using an antisolvent. The geometrical constraints to the small nano-objects made of high-molecular-weight rigid polymers are described. The conditions to produce nanostructures also affect the intrinsic properties of PANI (conductivity, crystallinity, and electroactivity). Selected technological applications of PANI nano-objects manufactured as colloidal dispersions without templates are discussed. Based on the reviewed work and models, future lines of work are proposed.","PeriodicalId":52345,"journal":{"name":"Nanomanufacturing and Metrology","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Diverse Methods to Nanomanufacture Colloidal Dispersions of Polyaniline without Templates\",\"authors\":\"C. Barbero\",\"doi\":\"10.3390/nanomanufacturing3010005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Different methods which could be used to produce colloidal dispersions of polyaniline (PANI) nano-objects without templates are described. While the methods are non-deterministic, different nano-objects (nanospheres, nanofibers, nanobelts, nanorice, nanotubes, nanorods, nanodisks, etc.) can be produced. Those most used are: (i) solution polymerization with steric stabilizers (SPS) to produce nanospheres, (ii) interfacial polymerization (IP) to produce nanofibers and (iii) solution polymerization in the presence of additives (SPA) to produce nanotubes. Oxidation of aniline in aqueous solution could produce nanotubes, nanofibers and other shapes by controlling mass transport/concentration of reactants, pH, and the presence of oligomers/additives. The different models proposed to explain the formation of various nano-objects are discussed. Mechanochemical polymerization (MCP) could produce nanofibers or nanospheres by controlling the aniline/oxidant ratio. PANI nanospheres of tunable sizes can also be produced by nanoprecipitation (NPT) of preformed PANI from its solutions using an antisolvent. The geometrical constraints to the small nano-objects made of high-molecular-weight rigid polymers are described. The conditions to produce nanostructures also affect the intrinsic properties of PANI (conductivity, crystallinity, and electroactivity). Selected technological applications of PANI nano-objects manufactured as colloidal dispersions without templates are discussed. Based on the reviewed work and models, future lines of work are proposed.\",\"PeriodicalId\":52345,\"journal\":{\"name\":\"Nanomanufacturing and Metrology\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomanufacturing and Metrology\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.3390/nanomanufacturing3010005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomanufacturing and Metrology","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.3390/nanomanufacturing3010005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
Diverse Methods to Nanomanufacture Colloidal Dispersions of Polyaniline without Templates
Different methods which could be used to produce colloidal dispersions of polyaniline (PANI) nano-objects without templates are described. While the methods are non-deterministic, different nano-objects (nanospheres, nanofibers, nanobelts, nanorice, nanotubes, nanorods, nanodisks, etc.) can be produced. Those most used are: (i) solution polymerization with steric stabilizers (SPS) to produce nanospheres, (ii) interfacial polymerization (IP) to produce nanofibers and (iii) solution polymerization in the presence of additives (SPA) to produce nanotubes. Oxidation of aniline in aqueous solution could produce nanotubes, nanofibers and other shapes by controlling mass transport/concentration of reactants, pH, and the presence of oligomers/additives. The different models proposed to explain the formation of various nano-objects are discussed. Mechanochemical polymerization (MCP) could produce nanofibers or nanospheres by controlling the aniline/oxidant ratio. PANI nanospheres of tunable sizes can also be produced by nanoprecipitation (NPT) of preformed PANI from its solutions using an antisolvent. The geometrical constraints to the small nano-objects made of high-molecular-weight rigid polymers are described. The conditions to produce nanostructures also affect the intrinsic properties of PANI (conductivity, crystallinity, and electroactivity). Selected technological applications of PANI nano-objects manufactured as colloidal dispersions without templates are discussed. Based on the reviewed work and models, future lines of work are proposed.
期刊介绍:
Nanomanufacturing and Metrology is a peer-reviewed, international and interdisciplinary research journal and is the first journal over the world that provides a principal forum for nano-manufacturing and nano-metrology.Nanomanufacturing and Metrology publishes in the forms including original articles, cutting-edge communications, timely review papers, technical reports, and case studies. Special issues devoted to developments in important topics in nano-manufacturing and metrology will be published periodically.Nanomanufacturing and Metrology publishes articles that focus on, but are not limited to, the following areas:• Nano-manufacturing and metrology• Atomic manufacturing and metrology• Micro-manufacturing and metrology• Physics, chemistry, and materials in micro-manufacturing, nano-manufacturing, and atomic manufacturing• Tools and processes for micro-manufacturing, nano-manufacturing and atomic manufacturing