V Lysenko, Y Guo, V D Rajput, E Chalenko, O Yadronova, T Zaruba, T Varduny, E Kirichenko
{"title":"二氧化硅纳米颗粒处理对大白菜叶片背腹不对称及无氧光合作用的响应","authors":"V Lysenko, Y Guo, V D Rajput, E Chalenko, O Yadronova, T Zaruba, T Varduny, E Kirichenko","doi":"10.32615/ps.2023.016","DOIUrl":null,"url":null,"abstract":"<p><p>Natural SiO<sub>2</sub> nanoparticles (SiO<sub>2</sub>-NPs) are widely distributed in the environment, and at the same time, synthetic SiO<sub>2</sub>-NP may be applied in agriculture. Evaluations of physiological responses to SiO<sub>2</sub>-NPs treatment of plants are controversial. They are often performed at adaxial leaf sides whereas NPs permeate leaf tissues through stomata located at the abaxial leaf side in the majority of bifacial plants. We measured coefficients of the functional dorsoventral asymmetry of NPs-stressed <i>Chelidonium majus</i> leaves, S, by values of the CO<sub>2</sub> assimilation rate (S<i>P</i> <sub>N</sub>), dark respiration (S<i>R</i>), maximal and operating quantum yields of photosystem II (SF<sub>v</sub>/F<sub>m</sub>, SF<sub>v</sub>'/F<sub>m</sub>'; using PAM-fluorometry), and oxygen coefficients of photosynthesis (SΨ<sub>O2</sub>; using photoacoustics). The results indicated that S<i>P</i> <sub>N</sub> and SΨ<sub>O2</sub> were significantly influenced by SiO<sub>2</sub>-NPs treatment, since <i>P</i> <sub>N</sub> and Ψ<sub>O2</sub> were declining more markedly when the light was directed to the abaxial side of leaves compared to the adaxial side. Overall, SiO<sub>2</sub>-NPs-induced stress increased 'anoxygenity' of photosynthesis.</p>","PeriodicalId":20157,"journal":{"name":"Photosynthetica","volume":"57 1","pages":"275-284"},"PeriodicalIF":2.1000,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11558580/pdf/","citationCount":"0","resultStr":"{\"title\":\"Changes of dorsoventral asymmetry and anoxygenic photosynthesis in response of <i>Chelidonium majus</i> leaves to the SiO<sub>2</sub> nanoparticle treatment.\",\"authors\":\"V Lysenko, Y Guo, V D Rajput, E Chalenko, O Yadronova, T Zaruba, T Varduny, E Kirichenko\",\"doi\":\"10.32615/ps.2023.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Natural SiO<sub>2</sub> nanoparticles (SiO<sub>2</sub>-NPs) are widely distributed in the environment, and at the same time, synthetic SiO<sub>2</sub>-NP may be applied in agriculture. Evaluations of physiological responses to SiO<sub>2</sub>-NPs treatment of plants are controversial. They are often performed at adaxial leaf sides whereas NPs permeate leaf tissues through stomata located at the abaxial leaf side in the majority of bifacial plants. We measured coefficients of the functional dorsoventral asymmetry of NPs-stressed <i>Chelidonium majus</i> leaves, S, by values of the CO<sub>2</sub> assimilation rate (S<i>P</i> <sub>N</sub>), dark respiration (S<i>R</i>), maximal and operating quantum yields of photosystem II (SF<sub>v</sub>/F<sub>m</sub>, SF<sub>v</sub>'/F<sub>m</sub>'; using PAM-fluorometry), and oxygen coefficients of photosynthesis (SΨ<sub>O2</sub>; using photoacoustics). The results indicated that S<i>P</i> <sub>N</sub> and SΨ<sub>O2</sub> were significantly influenced by SiO<sub>2</sub>-NPs treatment, since <i>P</i> <sub>N</sub> and Ψ<sub>O2</sub> were declining more markedly when the light was directed to the abaxial side of leaves compared to the adaxial side. Overall, SiO<sub>2</sub>-NPs-induced stress increased 'anoxygenity' of photosynthesis.</p>\",\"PeriodicalId\":20157,\"journal\":{\"name\":\"Photosynthetica\",\"volume\":\"57 1\",\"pages\":\"275-284\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11558580/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photosynthetica\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.32615/ps.2023.016\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photosynthetica","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.32615/ps.2023.016","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Changes of dorsoventral asymmetry and anoxygenic photosynthesis in response of Chelidonium majus leaves to the SiO2 nanoparticle treatment.
Natural SiO2 nanoparticles (SiO2-NPs) are widely distributed in the environment, and at the same time, synthetic SiO2-NP may be applied in agriculture. Evaluations of physiological responses to SiO2-NPs treatment of plants are controversial. They are often performed at adaxial leaf sides whereas NPs permeate leaf tissues through stomata located at the abaxial leaf side in the majority of bifacial plants. We measured coefficients of the functional dorsoventral asymmetry of NPs-stressed Chelidonium majus leaves, S, by values of the CO2 assimilation rate (SPN), dark respiration (SR), maximal and operating quantum yields of photosystem II (SFv/Fm, SFv'/Fm'; using PAM-fluorometry), and oxygen coefficients of photosynthesis (SΨO2; using photoacoustics). The results indicated that SPN and SΨO2 were significantly influenced by SiO2-NPs treatment, since PN and ΨO2 were declining more markedly when the light was directed to the abaxial side of leaves compared to the adaxial side. Overall, SiO2-NPs-induced stress increased 'anoxygenity' of photosynthesis.
期刊介绍:
Photosynthetica publishes original scientific papers and brief communications, reviews on specialized topics, book reviews and announcements and reports covering wide range of photosynthesis research or research including photosynthetic parameters of both experimental and theoretical nature and dealing with physiology, biophysics, biochemistry, molecular biology on one side and leaf optics, stress physiology and ecology of photosynthesis on the other side.
The language of journal is English (British or American). Papers should not be published or under consideration for publication elsewhere.