{"title":"权力群的半环和对合恒等式","authors":"S. V. Gusev, Mikhail Volkov","doi":"10.1017/S1446788722000374","DOIUrl":null,"url":null,"abstract":"\n\t <jats:p>For every group <jats:italic>G</jats:italic>, the set <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1446788722000374_inline1.png\" />\n\t\t<jats:tex-math>\n$\\mathcal {P}(G)$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> of its subsets forms a semiring under set-theoretical union <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1446788722000374_inline2.png\" />\n\t\t<jats:tex-math>\n$\\cup $\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> and element-wise multiplication <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1446788722000374_inline3.png\" />\n\t\t<jats:tex-math>\n$\\cdot $\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>, and forms an involution semigroup under <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1446788722000374_inline4.png\" />\n\t\t<jats:tex-math>\n$\\cdot $\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> and element-wise inversion <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1446788722000374_inline5.png\" />\n\t\t<jats:tex-math>\n${}^{-1}$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>. We show that if the group <jats:italic>G</jats:italic> is finite, non-Dedekind, and solvable, neither the semiring <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1446788722000374_inline6.png\" />\n\t\t<jats:tex-math>\n$(\\mathcal {P}(G),\\cup ,\\cdot )$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> nor the involution semigroup <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1446788722000374_inline7.png\" />\n\t\t<jats:tex-math>\n$(\\mathcal {P}(G),\\cdot ,{}^{-1})$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> admits a finite identity basis. We also solve the finite basis problem for the semiring of Hall relations over any finite set.</jats:p>","PeriodicalId":50007,"journal":{"name":"Journal of the Australian Mathematical Society","volume":"148 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"SEMIRING AND INVOLUTION IDENTITIES OF POWER GROUPS\",\"authors\":\"S. V. Gusev, Mikhail Volkov\",\"doi\":\"10.1017/S1446788722000374\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\t <jats:p>For every group <jats:italic>G</jats:italic>, the set <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S1446788722000374_inline1.png\\\" />\\n\\t\\t<jats:tex-math>\\n$\\\\mathcal {P}(G)$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> of its subsets forms a semiring under set-theoretical union <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S1446788722000374_inline2.png\\\" />\\n\\t\\t<jats:tex-math>\\n$\\\\cup $\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> and element-wise multiplication <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S1446788722000374_inline3.png\\\" />\\n\\t\\t<jats:tex-math>\\n$\\\\cdot $\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula>, and forms an involution semigroup under <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S1446788722000374_inline4.png\\\" />\\n\\t\\t<jats:tex-math>\\n$\\\\cdot $\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> and element-wise inversion <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S1446788722000374_inline5.png\\\" />\\n\\t\\t<jats:tex-math>\\n${}^{-1}$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula>. We show that if the group <jats:italic>G</jats:italic> is finite, non-Dedekind, and solvable, neither the semiring <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S1446788722000374_inline6.png\\\" />\\n\\t\\t<jats:tex-math>\\n$(\\\\mathcal {P}(G),\\\\cup ,\\\\cdot )$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> nor the involution semigroup <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S1446788722000374_inline7.png\\\" />\\n\\t\\t<jats:tex-math>\\n$(\\\\mathcal {P}(G),\\\\cdot ,{}^{-1})$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> admits a finite identity basis. We also solve the finite basis problem for the semiring of Hall relations over any finite set.</jats:p>\",\"PeriodicalId\":50007,\"journal\":{\"name\":\"Journal of the Australian Mathematical Society\",\"volume\":\"148 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Australian Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/S1446788722000374\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Australian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S1446788722000374","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
SEMIRING AND INVOLUTION IDENTITIES OF POWER GROUPS
For every group G, the set
$\mathcal {P}(G)$
of its subsets forms a semiring under set-theoretical union
$\cup $
and element-wise multiplication
$\cdot $
, and forms an involution semigroup under
$\cdot $
and element-wise inversion
${}^{-1}$
. We show that if the group G is finite, non-Dedekind, and solvable, neither the semiring
$(\mathcal {P}(G),\cup ,\cdot )$
nor the involution semigroup
$(\mathcal {P}(G),\cdot ,{}^{-1})$
admits a finite identity basis. We also solve the finite basis problem for the semiring of Hall relations over any finite set.
期刊介绍:
The Journal of the Australian Mathematical Society is the oldest journal of the Society, and is well established in its coverage of all areas of pure mathematics and mathematical statistics. It seeks to publish original high-quality articles of moderate length that will attract wide interest. Papers are carefully reviewed, and those with good introductions explaining the meaning and value of the results are preferred.
Published Bi-monthly
Published for the Australian Mathematical Society