权力群的半环和对合恒等式

IF 0.5 4区 数学 Q3 MATHEMATICS
S. V. Gusev, Mikhail Volkov
{"title":"权力群的半环和对合恒等式","authors":"S. V. Gusev, Mikhail Volkov","doi":"10.1017/S1446788722000374","DOIUrl":null,"url":null,"abstract":"\n\t <jats:p>For every group <jats:italic>G</jats:italic>, the set <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1446788722000374_inline1.png\" />\n\t\t<jats:tex-math>\n$\\mathcal {P}(G)$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> of its subsets forms a semiring under set-theoretical union <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1446788722000374_inline2.png\" />\n\t\t<jats:tex-math>\n$\\cup $\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> and element-wise multiplication <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1446788722000374_inline3.png\" />\n\t\t<jats:tex-math>\n$\\cdot $\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>, and forms an involution semigroup under <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1446788722000374_inline4.png\" />\n\t\t<jats:tex-math>\n$\\cdot $\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> and element-wise inversion <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1446788722000374_inline5.png\" />\n\t\t<jats:tex-math>\n${}^{-1}$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>. We show that if the group <jats:italic>G</jats:italic> is finite, non-Dedekind, and solvable, neither the semiring <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1446788722000374_inline6.png\" />\n\t\t<jats:tex-math>\n$(\\mathcal {P}(G),\\cup ,\\cdot )$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> nor the involution semigroup <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1446788722000374_inline7.png\" />\n\t\t<jats:tex-math>\n$(\\mathcal {P}(G),\\cdot ,{}^{-1})$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> admits a finite identity basis. We also solve the finite basis problem for the semiring of Hall relations over any finite set.</jats:p>","PeriodicalId":50007,"journal":{"name":"Journal of the Australian Mathematical Society","volume":"148 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"SEMIRING AND INVOLUTION IDENTITIES OF POWER GROUPS\",\"authors\":\"S. V. Gusev, Mikhail Volkov\",\"doi\":\"10.1017/S1446788722000374\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\t <jats:p>For every group <jats:italic>G</jats:italic>, the set <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S1446788722000374_inline1.png\\\" />\\n\\t\\t<jats:tex-math>\\n$\\\\mathcal {P}(G)$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> of its subsets forms a semiring under set-theoretical union <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S1446788722000374_inline2.png\\\" />\\n\\t\\t<jats:tex-math>\\n$\\\\cup $\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> and element-wise multiplication <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S1446788722000374_inline3.png\\\" />\\n\\t\\t<jats:tex-math>\\n$\\\\cdot $\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula>, and forms an involution semigroup under <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S1446788722000374_inline4.png\\\" />\\n\\t\\t<jats:tex-math>\\n$\\\\cdot $\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> and element-wise inversion <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S1446788722000374_inline5.png\\\" />\\n\\t\\t<jats:tex-math>\\n${}^{-1}$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula>. We show that if the group <jats:italic>G</jats:italic> is finite, non-Dedekind, and solvable, neither the semiring <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S1446788722000374_inline6.png\\\" />\\n\\t\\t<jats:tex-math>\\n$(\\\\mathcal {P}(G),\\\\cup ,\\\\cdot )$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> nor the involution semigroup <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S1446788722000374_inline7.png\\\" />\\n\\t\\t<jats:tex-math>\\n$(\\\\mathcal {P}(G),\\\\cdot ,{}^{-1})$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> admits a finite identity basis. We also solve the finite basis problem for the semiring of Hall relations over any finite set.</jats:p>\",\"PeriodicalId\":50007,\"journal\":{\"name\":\"Journal of the Australian Mathematical Society\",\"volume\":\"148 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Australian Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/S1446788722000374\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Australian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S1446788722000374","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

对于每一个群G,其子集的集合$\mathcal {P}(G)$在集合论并$\cup $和元素智能乘法$\cdot $下形成一个半环,在$\cdot $和元素智能反转${}^{-1}$下形成一个对合半群。证明了如果群G是有限的、非dedekind的、可解的,则半环$(\mathcal {P}(G),\cup,\cdot)$和对合半群$(\mathcal {P}(G),\cdot,{}^{-1})$都不存在有限恒等基。我们还解决了任意有限集上Hall关系半环的有限基问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SEMIRING AND INVOLUTION IDENTITIES OF POWER GROUPS
For every group G, the set $\mathcal {P}(G)$ of its subsets forms a semiring under set-theoretical union $\cup $ and element-wise multiplication $\cdot $ , and forms an involution semigroup under $\cdot $ and element-wise inversion ${}^{-1}$ . We show that if the group G is finite, non-Dedekind, and solvable, neither the semiring $(\mathcal {P}(G),\cup ,\cdot )$ nor the involution semigroup $(\mathcal {P}(G),\cdot ,{}^{-1})$ admits a finite identity basis. We also solve the finite basis problem for the semiring of Hall relations over any finite set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
36
审稿时长
6 months
期刊介绍: The Journal of the Australian Mathematical Society is the oldest journal of the Society, and is well established in its coverage of all areas of pure mathematics and mathematical statistics. It seeks to publish original high-quality articles of moderate length that will attract wide interest. Papers are carefully reviewed, and those with good introductions explaining the meaning and value of the results are preferred. Published Bi-monthly Published for the Australian Mathematical Society
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信