{"title":"权力群的半环和对合恒等式","authors":"S. V. Gusev, Mikhail Volkov","doi":"10.1017/S1446788722000374","DOIUrl":null,"url":null,"abstract":"\n\t <jats:p>For every group <jats:italic>G</jats:italic>, the set <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1446788722000374_inline1.png\" />\n\t\t<jats:tex-math>\n$\\mathcal {P}(G)$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> of its subsets forms a semiring under set-theoretical union <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1446788722000374_inline2.png\" />\n\t\t<jats:tex-math>\n$\\cup $\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> and element-wise multiplication <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1446788722000374_inline3.png\" />\n\t\t<jats:tex-math>\n$\\cdot $\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>, and forms an involution semigroup under <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1446788722000374_inline4.png\" />\n\t\t<jats:tex-math>\n$\\cdot $\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> and element-wise inversion <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1446788722000374_inline5.png\" />\n\t\t<jats:tex-math>\n${}^{-1}$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>. We show that if the group <jats:italic>G</jats:italic> is finite, non-Dedekind, and solvable, neither the semiring <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1446788722000374_inline6.png\" />\n\t\t<jats:tex-math>\n$(\\mathcal {P}(G),\\cup ,\\cdot )$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> nor the involution semigroup <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1446788722000374_inline7.png\" />\n\t\t<jats:tex-math>\n$(\\mathcal {P}(G),\\cdot ,{}^{-1})$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> admits a finite identity basis. We also solve the finite basis problem for the semiring of Hall relations over any finite set.</jats:p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"SEMIRING AND INVOLUTION IDENTITIES OF POWER GROUPS\",\"authors\":\"S. V. Gusev, Mikhail Volkov\",\"doi\":\"10.1017/S1446788722000374\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\t <jats:p>For every group <jats:italic>G</jats:italic>, the set <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S1446788722000374_inline1.png\\\" />\\n\\t\\t<jats:tex-math>\\n$\\\\mathcal {P}(G)$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> of its subsets forms a semiring under set-theoretical union <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S1446788722000374_inline2.png\\\" />\\n\\t\\t<jats:tex-math>\\n$\\\\cup $\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> and element-wise multiplication <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S1446788722000374_inline3.png\\\" />\\n\\t\\t<jats:tex-math>\\n$\\\\cdot $\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula>, and forms an involution semigroup under <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S1446788722000374_inline4.png\\\" />\\n\\t\\t<jats:tex-math>\\n$\\\\cdot $\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> and element-wise inversion <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S1446788722000374_inline5.png\\\" />\\n\\t\\t<jats:tex-math>\\n${}^{-1}$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula>. We show that if the group <jats:italic>G</jats:italic> is finite, non-Dedekind, and solvable, neither the semiring <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S1446788722000374_inline6.png\\\" />\\n\\t\\t<jats:tex-math>\\n$(\\\\mathcal {P}(G),\\\\cup ,\\\\cdot )$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> nor the involution semigroup <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S1446788722000374_inline7.png\\\" />\\n\\t\\t<jats:tex-math>\\n$(\\\\mathcal {P}(G),\\\\cdot ,{}^{-1})$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> admits a finite identity basis. We also solve the finite basis problem for the semiring of Hall relations over any finite set.</jats:p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/S1446788722000374\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S1446788722000374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
SEMIRING AND INVOLUTION IDENTITIES OF POWER GROUPS
For every group G, the set
$\mathcal {P}(G)$
of its subsets forms a semiring under set-theoretical union
$\cup $
and element-wise multiplication
$\cdot $
, and forms an involution semigroup under
$\cdot $
and element-wise inversion
${}^{-1}$
. We show that if the group G is finite, non-Dedekind, and solvable, neither the semiring
$(\mathcal {P}(G),\cup ,\cdot )$
nor the involution semigroup
$(\mathcal {P}(G),\cdot ,{}^{-1})$
admits a finite identity basis. We also solve the finite basis problem for the semiring of Hall relations over any finite set.