三种Lotka - Volterra微分方程模型的近似解析解

Q4 Multidisciplinary
Dionisel Regalado
{"title":"三种Lotka - Volterra微分方程模型的近似解析解","authors":"Dionisel Regalado","doi":"10.32871/rmrj.2109.02.09","DOIUrl":null,"url":null,"abstract":"This paper provides an approximate analytic solution to the three species Lotka – Volterra differential equations by symbolic regression. The approximate analytic solution through symbolic regression is made as close as desired to the actual analytic solution by using the Jacobian system. This is proposed as the equilibrium will be stabilized if and only if the real parts of each of the eigenvalues are negative. As a result, the symbolic regression approach is found to provide an approximation to the faster convergence that can be expected with a more refined Euler numerical approach.","PeriodicalId":34442,"journal":{"name":"Recoletos Multidisciplinary Research Journal","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximate Analytic Solution to the Three Species Lotka – Volterra Differential Equation Model\",\"authors\":\"Dionisel Regalado\",\"doi\":\"10.32871/rmrj.2109.02.09\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper provides an approximate analytic solution to the three species Lotka – Volterra differential equations by symbolic regression. The approximate analytic solution through symbolic regression is made as close as desired to the actual analytic solution by using the Jacobian system. This is proposed as the equilibrium will be stabilized if and only if the real parts of each of the eigenvalues are negative. As a result, the symbolic regression approach is found to provide an approximation to the faster convergence that can be expected with a more refined Euler numerical approach.\",\"PeriodicalId\":34442,\"journal\":{\"name\":\"Recoletos Multidisciplinary Research Journal\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recoletos Multidisciplinary Research Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32871/rmrj.2109.02.09\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Multidisciplinary\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recoletos Multidisciplinary Research Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32871/rmrj.2109.02.09","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

摘要

本文用符号回归方法给出了三种Lotka - Volterra微分方程的近似解析解。通过符号回归得到近似解析解,并利用雅可比系统得到与实际解析解尽可能接近的解析解。当且仅当每个特征值的实部为负时,平衡才会稳定。因此,发现符号回归方法提供了一种近似的更快的收敛速度,而这种收敛速度可以通过更精细的欧拉数值方法得到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximate Analytic Solution to the Three Species Lotka – Volterra Differential Equation Model
This paper provides an approximate analytic solution to the three species Lotka – Volterra differential equations by symbolic regression. The approximate analytic solution through symbolic regression is made as close as desired to the actual analytic solution by using the Jacobian system. This is proposed as the equilibrium will be stabilized if and only if the real parts of each of the eigenvalues are negative. As a result, the symbolic regression approach is found to provide an approximation to the faster convergence that can be expected with a more refined Euler numerical approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
19
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信