{"title":"无线无源传感器印刷螺旋线圈的设计与优化","authors":"Babak Noroozi, Bashir I. Morshed","doi":"10.1049/wss2.12019","DOIUrl":null,"url":null,"abstract":"<p>Monitoring physiological signals during regular life might provide many benefits including early detection of abnormalities and tracking the severities of diseases. A wireless connection between the passive sensor and the scanner eliminates the obtrusive wires, resolves battery-related issues, and makes it easy-to-use. We have previously proposed a wireless resistive analogue passive sensor technique that operates with the help of inductive coupling. The variation of resistive physiological transducer (secondary side) leads to amplitude modulation on the scanner coil (primary side). The design of printed spiral coil (PSC) on printed circuit board, significantly affects the performance of the overall system in terms of sensitivity, the output voltage change as a reflection of the transducer change. To optimize the PSC's profile and maximize the sensitivity, we employ three methods: iterative, analytical, and genetic algorithm (GA). The GA optimized PSCs, as the best result, have been fabricated and the measurement showed a sensitivity of 0.72 mƱ which has 5% (8.8%) deviation from the simulation (theoretical) results. This method can be utilized to design a PSC pair in near-field applications to transfer amplitude modulation with various sizes and fabrication constraints.</p>","PeriodicalId":51726,"journal":{"name":"IET Wireless Sensor Systems","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2021-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/wss2.12019","citationCount":"3","resultStr":"{\"title\":\"Design and optimization of printed spiral coils for wireless passive sensors\",\"authors\":\"Babak Noroozi, Bashir I. Morshed\",\"doi\":\"10.1049/wss2.12019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Monitoring physiological signals during regular life might provide many benefits including early detection of abnormalities and tracking the severities of diseases. A wireless connection between the passive sensor and the scanner eliminates the obtrusive wires, resolves battery-related issues, and makes it easy-to-use. We have previously proposed a wireless resistive analogue passive sensor technique that operates with the help of inductive coupling. The variation of resistive physiological transducer (secondary side) leads to amplitude modulation on the scanner coil (primary side). The design of printed spiral coil (PSC) on printed circuit board, significantly affects the performance of the overall system in terms of sensitivity, the output voltage change as a reflection of the transducer change. To optimize the PSC's profile and maximize the sensitivity, we employ three methods: iterative, analytical, and genetic algorithm (GA). The GA optimized PSCs, as the best result, have been fabricated and the measurement showed a sensitivity of 0.72 mƱ which has 5% (8.8%) deviation from the simulation (theoretical) results. This method can be utilized to design a PSC pair in near-field applications to transfer amplitude modulation with various sizes and fabrication constraints.</p>\",\"PeriodicalId\":51726,\"journal\":{\"name\":\"IET Wireless Sensor Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/wss2.12019\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Wireless Sensor Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/wss2.12019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Wireless Sensor Systems","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/wss2.12019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
Design and optimization of printed spiral coils for wireless passive sensors
Monitoring physiological signals during regular life might provide many benefits including early detection of abnormalities and tracking the severities of diseases. A wireless connection between the passive sensor and the scanner eliminates the obtrusive wires, resolves battery-related issues, and makes it easy-to-use. We have previously proposed a wireless resistive analogue passive sensor technique that operates with the help of inductive coupling. The variation of resistive physiological transducer (secondary side) leads to amplitude modulation on the scanner coil (primary side). The design of printed spiral coil (PSC) on printed circuit board, significantly affects the performance of the overall system in terms of sensitivity, the output voltage change as a reflection of the transducer change. To optimize the PSC's profile and maximize the sensitivity, we employ three methods: iterative, analytical, and genetic algorithm (GA). The GA optimized PSCs, as the best result, have been fabricated and the measurement showed a sensitivity of 0.72 mƱ which has 5% (8.8%) deviation from the simulation (theoretical) results. This method can be utilized to design a PSC pair in near-field applications to transfer amplitude modulation with various sizes and fabrication constraints.
期刊介绍:
IET Wireless Sensor Systems is aimed at the growing field of wireless sensor networks and distributed systems, which has been expanding rapidly in recent years and is evolving into a multi-billion dollar industry. The Journal has been launched to give a platform to researchers and academics in the field and is intended to cover the research, engineering, technological developments, innovative deployment of distributed sensor and actuator systems. Topics covered include, but are not limited to theoretical developments of: Innovative Architectures for Smart Sensors;Nano Sensors and Actuators Unstructured Networking; Cooperative and Clustering Distributed Sensors; Data Fusion for Distributed Sensors; Distributed Intelligence in Distributed Sensors; Energy Harvesting for and Lifetime of Smart Sensors and Actuators; Cross-Layer Design and Layer Optimisation in Distributed Sensors; Security, Trust and Dependability of Distributed Sensors. The Journal also covers; Innovative Services and Applications for: Monitoring: Health, Traffic, Weather and Toxins; Surveillance: Target Tracking and Localization; Observation: Global Resources and Geological Activities (Earth, Forest, Mines, Underwater); Industrial Applications of Distributed Sensors in Green and Agile Manufacturing; Sensor and RFID Applications of the Internet-of-Things ("IoT"); Smart Metering; Machine-to-Machine Communications.