{"title":"自定义基于fpga的流计算微架构","authors":"J. Alves, P. Diniz","doi":"10.1109/SPL.2011.5782624","DOIUrl":null,"url":null,"abstract":"This paper describes a micro-architecture for a custom programmable FPGA-based processor, with direct support for streaming and vector computations relying on custom cache memory storage. The processor combines a custom data-path with several parallel data ports for accessing operands in streaming mode thus efficiently supporting nested looping constructs found in high-level languages while mitigating the impact on external memory bandwidth. The architecture leverages the strided access patterns of streaming data access using a microcoded sequencer with multi-dimensional nested looping capability. We present synthesis results for the main components of the architecture on a Xilinx's Virtex-4 FPGA device. The results reveal the architecture to be extremely flexible and consume few FPGA resources.","PeriodicalId":6329,"journal":{"name":"2011 VII Southern Conference on Programmable Logic (SPL)","volume":"62 1","pages":"51-56"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Custom FPGA-based micro-architecture for streaming computing\",\"authors\":\"J. Alves, P. Diniz\",\"doi\":\"10.1109/SPL.2011.5782624\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a micro-architecture for a custom programmable FPGA-based processor, with direct support for streaming and vector computations relying on custom cache memory storage. The processor combines a custom data-path with several parallel data ports for accessing operands in streaming mode thus efficiently supporting nested looping constructs found in high-level languages while mitigating the impact on external memory bandwidth. The architecture leverages the strided access patterns of streaming data access using a microcoded sequencer with multi-dimensional nested looping capability. We present synthesis results for the main components of the architecture on a Xilinx's Virtex-4 FPGA device. The results reveal the architecture to be extremely flexible and consume few FPGA resources.\",\"PeriodicalId\":6329,\"journal\":{\"name\":\"2011 VII Southern Conference on Programmable Logic (SPL)\",\"volume\":\"62 1\",\"pages\":\"51-56\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 VII Southern Conference on Programmable Logic (SPL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPL.2011.5782624\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 VII Southern Conference on Programmable Logic (SPL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPL.2011.5782624","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Custom FPGA-based micro-architecture for streaming computing
This paper describes a micro-architecture for a custom programmable FPGA-based processor, with direct support for streaming and vector computations relying on custom cache memory storage. The processor combines a custom data-path with several parallel data ports for accessing operands in streaming mode thus efficiently supporting nested looping constructs found in high-level languages while mitigating the impact on external memory bandwidth. The architecture leverages the strided access patterns of streaming data access using a microcoded sequencer with multi-dimensional nested looping capability. We present synthesis results for the main components of the architecture on a Xilinx's Virtex-4 FPGA device. The results reveal the architecture to be extremely flexible and consume few FPGA resources.