虚功原理和伽利略流形上的哈密顿原理

IF 1 4区 数学 Q3 MATHEMATICS, APPLIED
G. Capobianco, T. Winandy, S. Eugster
{"title":"虚功原理和伽利略流形上的哈密顿原理","authors":"G. Capobianco, T. Winandy, S. Eugster","doi":"10.3934/JGM.2021002","DOIUrl":null,"url":null,"abstract":"To describe time-dependent finite-dimensional mechanical systems, their generalized space-time is modeled as a Galilean manifold. On this basis, we present a geometric mechanical theory that unifies Lagrangian and Hamiltonian mechanics. Moreover, a general definition of force is given, such that the theory is capable of treating nonpotential forces acting on a mechanical system. Within this theory, we elaborate the interconnections between classical equations known from analytical mechanics such as the principle of virtual work, Lagrange's equations of the second kind, Hamilton's equations, Lagrange's central equation, Hamel's generalized central equation as well as Hamilton's principle.","PeriodicalId":49161,"journal":{"name":"Journal of Geometric Mechanics","volume":"4 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The principle of virtual work and Hamilton's principle on Galilean manifolds\",\"authors\":\"G. Capobianco, T. Winandy, S. Eugster\",\"doi\":\"10.3934/JGM.2021002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To describe time-dependent finite-dimensional mechanical systems, their generalized space-time is modeled as a Galilean manifold. On this basis, we present a geometric mechanical theory that unifies Lagrangian and Hamiltonian mechanics. Moreover, a general definition of force is given, such that the theory is capable of treating nonpotential forces acting on a mechanical system. Within this theory, we elaborate the interconnections between classical equations known from analytical mechanics such as the principle of virtual work, Lagrange's equations of the second kind, Hamilton's equations, Lagrange's central equation, Hamel's generalized central equation as well as Hamilton's principle.\",\"PeriodicalId\":49161,\"journal\":{\"name\":\"Journal of Geometric Mechanics\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geometric Mechanics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/JGM.2021002\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometric Mechanics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/JGM.2021002","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

为了描述与时间相关的有限维机械系统,将其广义时空建模为伽利略流形。在此基础上,我们提出了一个统一拉格朗日力学和哈密顿力学的几何力学理论。此外,还给出了力的一般定义,使该理论能够处理作用于机械系统的非势力。在这一理论中,我们详细阐述了分析力学中已知的经典方程之间的相互联系,如虚功原理、第二类拉格朗日方程、汉密尔顿方程、拉格朗日中心方程、哈默尔广义中心方程以及汉密尔顿原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The principle of virtual work and Hamilton's principle on Galilean manifolds
To describe time-dependent finite-dimensional mechanical systems, their generalized space-time is modeled as a Galilean manifold. On this basis, we present a geometric mechanical theory that unifies Lagrangian and Hamiltonian mechanics. Moreover, a general definition of force is given, such that the theory is capable of treating nonpotential forces acting on a mechanical system. Within this theory, we elaborate the interconnections between classical equations known from analytical mechanics such as the principle of virtual work, Lagrange's equations of the second kind, Hamilton's equations, Lagrange's central equation, Hamel's generalized central equation as well as Hamilton's principle.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geometric Mechanics
Journal of Geometric Mechanics MATHEMATICS, APPLIED-PHYSICS, MATHEMATICAL
CiteScore
1.70
自引率
12.50%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Journal of Geometric Mechanics (JGM) aims to publish research articles devoted to geometric methods (in a broad sense) in mechanics and control theory, and intends to facilitate interaction between theory and applications. Advances in the following topics are welcomed by the journal: 1. Lagrangian and Hamiltonian mechanics 2. Symplectic and Poisson geometry and their applications to mechanics 3. Geometric and optimal control theory 4. Geometric and variational integration 5. Geometry of stochastic systems 6. Geometric methods in dynamical systems 7. Continuum mechanics 8. Classical field theory 9. Fluid mechanics 10. Infinite-dimensional dynamical systems 11. Quantum mechanics and quantum information theory 12. Applications in physics, technology, engineering and the biological sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信