A. Abulaitijiang, O. Andersen, R. Barzaghi, P. Knudsen
{"title":"基于卫星测高的沿海海洋重力模拟——地中海的案例研究","authors":"A. Abulaitijiang, O. Andersen, R. Barzaghi, P. Knudsen","doi":"10.1515/jogs-2020-0200","DOIUrl":null,"url":null,"abstract":"Abstract The coastal marine gravity field is not well modelled due to poor data coverage. Recent satellite altimeters provide reliable altimetry observations near the coast, filling the gaps between the open ocean and land. We show the potential of recent satellite altimetry for the coastal marine gravity modelling using the least squares collocation technique. Gravity prediction error near the coast is better than 4 mGal. The modelled gravity anomalies are validated with sparse shipborne gravimetric measurements. We obtained 4.86 mGal precision when using the altimetry data with the best coastal coverage and retracked with narrow primary peak retracker. The predicted gravity field is an enhancement to EGM2008 over the coastal regions. The potential improvement in alti- metric marine gravity will be beneficial for the next generation of EGM development.","PeriodicalId":44569,"journal":{"name":"Journal of Geodetic Science","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Coastal marine gravity modelling from satellite altimetry – case study in the Mediterranean\",\"authors\":\"A. Abulaitijiang, O. Andersen, R. Barzaghi, P. Knudsen\",\"doi\":\"10.1515/jogs-2020-0200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The coastal marine gravity field is not well modelled due to poor data coverage. Recent satellite altimeters provide reliable altimetry observations near the coast, filling the gaps between the open ocean and land. We show the potential of recent satellite altimetry for the coastal marine gravity modelling using the least squares collocation technique. Gravity prediction error near the coast is better than 4 mGal. The modelled gravity anomalies are validated with sparse shipborne gravimetric measurements. We obtained 4.86 mGal precision when using the altimetry data with the best coastal coverage and retracked with narrow primary peak retracker. The predicted gravity field is an enhancement to EGM2008 over the coastal regions. The potential improvement in alti- metric marine gravity will be beneficial for the next generation of EGM development.\",\"PeriodicalId\":44569,\"journal\":{\"name\":\"Journal of Geodetic Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geodetic Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jogs-2020-0200\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geodetic Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jogs-2020-0200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"REMOTE SENSING","Score":null,"Total":0}
Coastal marine gravity modelling from satellite altimetry – case study in the Mediterranean
Abstract The coastal marine gravity field is not well modelled due to poor data coverage. Recent satellite altimeters provide reliable altimetry observations near the coast, filling the gaps between the open ocean and land. We show the potential of recent satellite altimetry for the coastal marine gravity modelling using the least squares collocation technique. Gravity prediction error near the coast is better than 4 mGal. The modelled gravity anomalies are validated with sparse shipborne gravimetric measurements. We obtained 4.86 mGal precision when using the altimetry data with the best coastal coverage and retracked with narrow primary peak retracker. The predicted gravity field is an enhancement to EGM2008 over the coastal regions. The potential improvement in alti- metric marine gravity will be beneficial for the next generation of EGM development.