原位金属基复合材料在增材制造中的发展:展望

Q3 Engineering
U. A. Essien, S. Vaudreuil
{"title":"原位金属基复合材料在增材制造中的发展:展望","authors":"U. A. Essien, S. Vaudreuil","doi":"10.5604/01.3001.0015.9997","DOIUrl":null,"url":null,"abstract":"This paper presents an overview on some ceramic materials capable of achieving in-situ reinforcements in Al/Al-alloy metal matrix composites (MMCs) during laser processing. It also presents perspective on further exploitation of the in-situ reinforcement capabilities for high quality MMCs feedstock material development.\n\nThe approach utilized in writing this paper encompasses the review of relevant literature on additive manufacturing (AM) of MMCs.\n\nIt is widely accepted that the in-situ reinforcement approach has proven to be more advantageous than the ex-situ approach. Though there are still some challenges like the formation of detremental phases and the evaporation of low melting temperature elements, the in-situ reinforcement approach can be used to tailor design composite powder feedstock materials for the AM of MMCs. The preprocessing or tailor-designing in-situ metal matrix composite powder before laser melting into desired components holds more promises for metal additive manufacturing.\n\nThe need for the development of MMCs powder feedstock that can be directly fabricated using suitable AM technique without prior powder processing like blending or mechanical alloying has not yet been addressed Therefore, having a pre-processed in-situ reinforced MMC feedstock powder can encourage easy fabrication of MMC and other advantages of AM technologies powder recycling.\n\nThe idea explained in this article is relevant to materials development for AM processing of metal matrix composite. This paper has pointed out future trends for MMCs materials feedstock powder development and new ideas for further exploitation of MMCs and AM technologies. The advantages of tailor-designing composite powders other than merely mixing them has been emphasized.\n\n","PeriodicalId":14825,"journal":{"name":"Journal of Achievements in Materials and Manufacturing Engineering","volume":"54 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"In-situ metal matrix composites development for additive manufacturing: a perspective\",\"authors\":\"U. A. Essien, S. Vaudreuil\",\"doi\":\"10.5604/01.3001.0015.9997\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an overview on some ceramic materials capable of achieving in-situ reinforcements in Al/Al-alloy metal matrix composites (MMCs) during laser processing. It also presents perspective on further exploitation of the in-situ reinforcement capabilities for high quality MMCs feedstock material development.\\n\\nThe approach utilized in writing this paper encompasses the review of relevant literature on additive manufacturing (AM) of MMCs.\\n\\nIt is widely accepted that the in-situ reinforcement approach has proven to be more advantageous than the ex-situ approach. Though there are still some challenges like the formation of detremental phases and the evaporation of low melting temperature elements, the in-situ reinforcement approach can be used to tailor design composite powder feedstock materials for the AM of MMCs. The preprocessing or tailor-designing in-situ metal matrix composite powder before laser melting into desired components holds more promises for metal additive manufacturing.\\n\\nThe need for the development of MMCs powder feedstock that can be directly fabricated using suitable AM technique without prior powder processing like blending or mechanical alloying has not yet been addressed Therefore, having a pre-processed in-situ reinforced MMC feedstock powder can encourage easy fabrication of MMC and other advantages of AM technologies powder recycling.\\n\\nThe idea explained in this article is relevant to materials development for AM processing of metal matrix composite. This paper has pointed out future trends for MMCs materials feedstock powder development and new ideas for further exploitation of MMCs and AM technologies. The advantages of tailor-designing composite powders other than merely mixing them has been emphasized.\\n\\n\",\"PeriodicalId\":14825,\"journal\":{\"name\":\"Journal of Achievements in Materials and Manufacturing Engineering\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Achievements in Materials and Manufacturing Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5604/01.3001.0015.9997\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Achievements in Materials and Manufacturing Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5604/01.3001.0015.9997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 3

摘要

本文综述了几种能够在激光加工中实现原位增强Al/铝合金金属基复合材料的陶瓷材料。本文还提出了进一步开发高质量mmc原料材料的原位增强能力的观点。本文采用的方法包括对mmc增材制造(AM)的相关文献的回顾。人们普遍认为原位加固方法比非原位加固方法更有利。虽然还存在不利相的形成和低温元素的蒸发等问题,但原位增强方法可以用于mmc增材制造的复合粉末原料的定制设计。在激光熔化成所需部件之前对原位金属基复合材料粉末进行预处理或定制设计,为金属增材制造提供了更多的希望。开发可以使用合适的AM技术直接制造的MMC粉末原料的需求尚未得到解决,而无需事先进行混合或机械合金化等粉末加工。因此,拥有预处理的原位增强MMC原料粉末可以促进MMC的易于制造和AM技术粉末回收的其他优势。本文阐述的思路与金属基复合材料增材制造的材料开发有关。本文指出了复合材料原料粉的发展趋势,以及复合材料和增材制造技术进一步开发的新思路。强调了定制复合粉末的优点,而不是简单地混合它们。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
In-situ metal matrix composites development for additive manufacturing: a perspective
This paper presents an overview on some ceramic materials capable of achieving in-situ reinforcements in Al/Al-alloy metal matrix composites (MMCs) during laser processing. It also presents perspective on further exploitation of the in-situ reinforcement capabilities for high quality MMCs feedstock material development. The approach utilized in writing this paper encompasses the review of relevant literature on additive manufacturing (AM) of MMCs. It is widely accepted that the in-situ reinforcement approach has proven to be more advantageous than the ex-situ approach. Though there are still some challenges like the formation of detremental phases and the evaporation of low melting temperature elements, the in-situ reinforcement approach can be used to tailor design composite powder feedstock materials for the AM of MMCs. The preprocessing or tailor-designing in-situ metal matrix composite powder before laser melting into desired components holds more promises for metal additive manufacturing. The need for the development of MMCs powder feedstock that can be directly fabricated using suitable AM technique without prior powder processing like blending or mechanical alloying has not yet been addressed Therefore, having a pre-processed in-situ reinforced MMC feedstock powder can encourage easy fabrication of MMC and other advantages of AM technologies powder recycling. The idea explained in this article is relevant to materials development for AM processing of metal matrix composite. This paper has pointed out future trends for MMCs materials feedstock powder development and new ideas for further exploitation of MMCs and AM technologies. The advantages of tailor-designing composite powders other than merely mixing them has been emphasized.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Achievements in Materials and Manufacturing Engineering
Journal of Achievements in Materials and Manufacturing Engineering Engineering-Industrial and Manufacturing Engineering
CiteScore
2.10
自引率
0.00%
发文量
15
期刊介绍: The Journal of Achievements in Materials and Manufacturing Engineering has been published by the Association for Computational Materials Science and Surface Engineering in collaboration with the World Academy of Materials and Manufacturing Engineering WAMME and the Section Metallic Materials of the Committee of Materials Science of the Polish Academy of Sciences as a monthly. It has 12 points which was received during the evaluation by the Ministry of Science and Higher Education journals and ICV 2017:100 on the ICI Journals Master list announced by the Index Copernicus. It is a continuation of "Proceedings on Achievements in Mechanical and Materials Engineering" published in 1992-2005. Scope: Materials[...] Properties[...] Methodology of Research[...] Analysis and Modelling[...] Manufacturing and Processingv Biomedical and Dental Engineering and Materials[...] Cleaner Production[...] Industrial Mangement and Organisation [...] Education and Research Trends[...]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信