{"title":"三维洛伦兹量子引力多矩阵模型的频闪分析","authors":"A. G. A. Pithis, Antonio D. Pereira, A. Eichhorn","doi":"10.14293/s2199-1006.1.sor-.pp53mpx.v1","DOIUrl":null,"url":null,"abstract":"At criticality, discrete quantum gravity models are expected to give rise to continuum spacetime. Recent progress has established the functional Renormalization Group method in the context of such models as a practical tool to study their critical properties and to chart their phase diagrams. Here, we apply these techniques to the multi-matrix model with ABAB-interaction potentially relevant for Lorentzian quantum gravity in 3 dimensions. We characterize the fixed-point structure and phase diagram of this model, paving the way for functional RG studies of more general multi-matrix or tensor models encoding causality.","PeriodicalId":21568,"journal":{"name":"ScienceOpen Posters","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FRG analysis of a multi-matrix model for 3d Lorentzian quantum gravity\",\"authors\":\"A. G. A. Pithis, Antonio D. Pereira, A. Eichhorn\",\"doi\":\"10.14293/s2199-1006.1.sor-.pp53mpx.v1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"At criticality, discrete quantum gravity models are expected to give rise to continuum spacetime. Recent progress has established the functional Renormalization Group method in the context of such models as a practical tool to study their critical properties and to chart their phase diagrams. Here, we apply these techniques to the multi-matrix model with ABAB-interaction potentially relevant for Lorentzian quantum gravity in 3 dimensions. We characterize the fixed-point structure and phase diagram of this model, paving the way for functional RG studies of more general multi-matrix or tensor models encoding causality.\",\"PeriodicalId\":21568,\"journal\":{\"name\":\"ScienceOpen Posters\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ScienceOpen Posters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14293/s2199-1006.1.sor-.pp53mpx.v1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ScienceOpen Posters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14293/s2199-1006.1.sor-.pp53mpx.v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
FRG analysis of a multi-matrix model for 3d Lorentzian quantum gravity
At criticality, discrete quantum gravity models are expected to give rise to continuum spacetime. Recent progress has established the functional Renormalization Group method in the context of such models as a practical tool to study their critical properties and to chart their phase diagrams. Here, we apply these techniques to the multi-matrix model with ABAB-interaction potentially relevant for Lorentzian quantum gravity in 3 dimensions. We characterize the fixed-point structure and phase diagram of this model, paving the way for functional RG studies of more general multi-matrix or tensor models encoding causality.