利用高性能深度学习平台加速目标检测

S. Stepanenko, P. Yakimov
{"title":"利用高性能深度学习平台加速目标检测","authors":"S. Stepanenko, P. Yakimov","doi":"10.18287/1613-0073-2019-2416-354-360","DOIUrl":null,"url":null,"abstract":"Object classification with use of neural networks is extremely current today. YOLO is one of the most often used frameworks for object classification. It produces high accuracy but the processing speed is not high enough especially in conditions of limited performance of a computer. This article researches use of a framework called NVIDIA TensorRT to optimize YOLO with the aim of increasing the image processing speed. Saving efficiency and quality of the neural network work TensorRT allows us to increase the processing speed using an optimization of the architecture and an optimization of calculations on a GPU.","PeriodicalId":10486,"journal":{"name":"Collection of selected papers of the III International Conference on Information Technology and Nanotechnology","volume":"51 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Using high-performance deep learning platform to accelerate object detection\",\"authors\":\"S. Stepanenko, P. Yakimov\",\"doi\":\"10.18287/1613-0073-2019-2416-354-360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Object classification with use of neural networks is extremely current today. YOLO is one of the most often used frameworks for object classification. It produces high accuracy but the processing speed is not high enough especially in conditions of limited performance of a computer. This article researches use of a framework called NVIDIA TensorRT to optimize YOLO with the aim of increasing the image processing speed. Saving efficiency and quality of the neural network work TensorRT allows us to increase the processing speed using an optimization of the architecture and an optimization of calculations on a GPU.\",\"PeriodicalId\":10486,\"journal\":{\"name\":\"Collection of selected papers of the III International Conference on Information Technology and Nanotechnology\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Collection of selected papers of the III International Conference on Information Technology and Nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18287/1613-0073-2019-2416-354-360\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Collection of selected papers of the III International Conference on Information Technology and Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18287/1613-0073-2019-2416-354-360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

使用神经网络进行对象分类是当今非常流行的。YOLO是最常用的对象分类框架之一。在计算机性能有限的情况下,其精度较高,但处理速度不够快。本文研究使用NVIDIA TensorRT框架对YOLO进行优化,旨在提高图像处理速度。节省神经网络工作的效率和质量TensorRT允许我们使用架构优化和GPU上的计算优化来提高处理速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using high-performance deep learning platform to accelerate object detection
Object classification with use of neural networks is extremely current today. YOLO is one of the most often used frameworks for object classification. It produces high accuracy but the processing speed is not high enough especially in conditions of limited performance of a computer. This article researches use of a framework called NVIDIA TensorRT to optimize YOLO with the aim of increasing the image processing speed. Saving efficiency and quality of the neural network work TensorRT allows us to increase the processing speed using an optimization of the architecture and an optimization of calculations on a GPU.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信