Ron Ye, Chunhong Liu, Daoliang Li, Yingyi Chen, Yuchen Guo, Qingling Duan
{"title":"利用近红外高光谱成像技术鉴定冷藏后虾的新鲜度","authors":"Ron Ye, Chunhong Liu, Daoliang Li, Yingyi Chen, Yuchen Guo, Qingling Duan","doi":"10.56530/spectroscopy.kz7587y6","DOIUrl":null,"url":null,"abstract":"Shrimp tends to deteriorate during the refrigeration process. To monitor the freshness of shrimp during refrigeration, near-infrared (NIR) hyperspectral imaging was utilized to non-destructively identify the freshness of shrimp. In the process, three preprocessing methods (multivariate scatter correction [MSC], standard normal variate [SNV], and direct orthogonal signal correction [DOSC]) were employed to preprocess the full-wavelength spectral data, and three characteristic wavelength extraction algorithms (competitive adaptive reweighted sampling [CARS], and random forest [RF] simulated annealing [SA]) were used to extract the best-pre-processed data. Because extreme learning machine (ELM) and kernel extreme learning machine (KELM) are easily affected by parameters, ELM (based on teaching-learning-based optimization [TLBO]) and KELM (based on teaching-learning-based optimization [TLBO]) were proposed. In this study, four discriminant models (ELM, TLBO– ELM, KELM, and TLBO–KELM) were used for the full wavelength modeling analysis and the characteristic wavelength modeling analysis. In this work, the results of the final selected models are presented.","PeriodicalId":21957,"journal":{"name":"Spectroscopy","volume":"60 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identifying Freshness of Shrimp Following Refrigeration Using Near-Infrared Hyperspectral Imaging\",\"authors\":\"Ron Ye, Chunhong Liu, Daoliang Li, Yingyi Chen, Yuchen Guo, Qingling Duan\",\"doi\":\"10.56530/spectroscopy.kz7587y6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Shrimp tends to deteriorate during the refrigeration process. To monitor the freshness of shrimp during refrigeration, near-infrared (NIR) hyperspectral imaging was utilized to non-destructively identify the freshness of shrimp. In the process, three preprocessing methods (multivariate scatter correction [MSC], standard normal variate [SNV], and direct orthogonal signal correction [DOSC]) were employed to preprocess the full-wavelength spectral data, and three characteristic wavelength extraction algorithms (competitive adaptive reweighted sampling [CARS], and random forest [RF] simulated annealing [SA]) were used to extract the best-pre-processed data. Because extreme learning machine (ELM) and kernel extreme learning machine (KELM) are easily affected by parameters, ELM (based on teaching-learning-based optimization [TLBO]) and KELM (based on teaching-learning-based optimization [TLBO]) were proposed. In this study, four discriminant models (ELM, TLBO– ELM, KELM, and TLBO–KELM) were used for the full wavelength modeling analysis and the characteristic wavelength modeling analysis. In this work, the results of the final selected models are presented.\",\"PeriodicalId\":21957,\"journal\":{\"name\":\"Spectroscopy\",\"volume\":\"60 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spectroscopy\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.56530/spectroscopy.kz7587y6\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"SPECTROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.56530/spectroscopy.kz7587y6","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
Identifying Freshness of Shrimp Following Refrigeration Using Near-Infrared Hyperspectral Imaging
Shrimp tends to deteriorate during the refrigeration process. To monitor the freshness of shrimp during refrigeration, near-infrared (NIR) hyperspectral imaging was utilized to non-destructively identify the freshness of shrimp. In the process, three preprocessing methods (multivariate scatter correction [MSC], standard normal variate [SNV], and direct orthogonal signal correction [DOSC]) were employed to preprocess the full-wavelength spectral data, and three characteristic wavelength extraction algorithms (competitive adaptive reweighted sampling [CARS], and random forest [RF] simulated annealing [SA]) were used to extract the best-pre-processed data. Because extreme learning machine (ELM) and kernel extreme learning machine (KELM) are easily affected by parameters, ELM (based on teaching-learning-based optimization [TLBO]) and KELM (based on teaching-learning-based optimization [TLBO]) were proposed. In this study, four discriminant models (ELM, TLBO– ELM, KELM, and TLBO–KELM) were used for the full wavelength modeling analysis and the characteristic wavelength modeling analysis. In this work, the results of the final selected models are presented.
期刊介绍:
Spectroscopy welcomes manuscripts that describe techniques and applications of all forms of spectroscopy and that are of immediate interest to users in industry, academia, and government.