{"title":"利用台北捷运智能卡数据研究 COVID-19 影响下的时空移动模式和捷运使用率变化。","authors":"Christian Martin Mützel, Joachim Scheiner","doi":"10.1007/s12469-021-00280-2","DOIUrl":null,"url":null,"abstract":"<p><p>Modern public transit systems are often run with automated fare collection (AFC) systems in combination with smart cards. These systems passively collect massive amounts of detailed spatio-temporal trip data, thus opening up new possibilities for public transit planning and management as well as providing new insights for urban planners. We use smart card trip data from Taipei, Taiwan, to perform an in-depth analysis of spatio-temporal station-to-station metro trip patterns for a whole week divided into several time slices. Based on simple linear regression and line graphs, days of the week and times of the day with similar temporal passenger flow patterns are identified. We visualize magnitudes of passenger flow based on actual geography. By comparing flows for January to March 2019 and for January to March 2020, we look at changes in metro trips under the impact of the coronavirus pandemic (COVID-19) that caused a state of emergency around the globe in 2020. Our results show that metro usage under the impact of COVID-19 has not declined uniformly, but instead is both spatially and temporally highly heterogeneous.</p>","PeriodicalId":46539,"journal":{"name":"Public Transport","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8365295/pdf/","citationCount":"0","resultStr":"{\"title\":\"Investigating spatio-temporal mobility patterns and changes in metro usage under the impact of COVID-19 using Taipei Metro smart card data.\",\"authors\":\"Christian Martin Mützel, Joachim Scheiner\",\"doi\":\"10.1007/s12469-021-00280-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Modern public transit systems are often run with automated fare collection (AFC) systems in combination with smart cards. These systems passively collect massive amounts of detailed spatio-temporal trip data, thus opening up new possibilities for public transit planning and management as well as providing new insights for urban planners. We use smart card trip data from Taipei, Taiwan, to perform an in-depth analysis of spatio-temporal station-to-station metro trip patterns for a whole week divided into several time slices. Based on simple linear regression and line graphs, days of the week and times of the day with similar temporal passenger flow patterns are identified. We visualize magnitudes of passenger flow based on actual geography. By comparing flows for January to March 2019 and for January to March 2020, we look at changes in metro trips under the impact of the coronavirus pandemic (COVID-19) that caused a state of emergency around the globe in 2020. Our results show that metro usage under the impact of COVID-19 has not declined uniformly, but instead is both spatially and temporally highly heterogeneous.</p>\",\"PeriodicalId\":46539,\"journal\":{\"name\":\"Public Transport\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8365295/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Public Transport\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12469-021-00280-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/8/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"TRANSPORTATION SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Public Transport","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12469-021-00280-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/8/16 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Investigating spatio-temporal mobility patterns and changes in metro usage under the impact of COVID-19 using Taipei Metro smart card data.
Modern public transit systems are often run with automated fare collection (AFC) systems in combination with smart cards. These systems passively collect massive amounts of detailed spatio-temporal trip data, thus opening up new possibilities for public transit planning and management as well as providing new insights for urban planners. We use smart card trip data from Taipei, Taiwan, to perform an in-depth analysis of spatio-temporal station-to-station metro trip patterns for a whole week divided into several time slices. Based on simple linear regression and line graphs, days of the week and times of the day with similar temporal passenger flow patterns are identified. We visualize magnitudes of passenger flow based on actual geography. By comparing flows for January to March 2019 and for January to March 2020, we look at changes in metro trips under the impact of the coronavirus pandemic (COVID-19) that caused a state of emergency around the globe in 2020. Our results show that metro usage under the impact of COVID-19 has not declined uniformly, but instead is both spatially and temporally highly heterogeneous.
期刊介绍:
The scope and purpose of the journal includes, but is not limited to, any type of research in the area of Public Transport: Planning and Operations. As its core it serves the primary mission of advancing the state of the art and the state of the practice in computer-aided systems and scheduling in public transport. The journal considers any type of subjects in this area especially with a focus to planning and scheduling, the common ground is the use of computer-aided methods and operations research techniques to improve information management, network and route planning, vehicle and crew scheduling and rostering, vehicle monitoring and management, and practical experience with scheduling and public transport planning methods. Besides theoretical papers, the journal also publishes case studies and applications. Public Transport addresses transport operators, consulting firms and academic institutions involved in development, utilization or research of computer-aided planning and scheduling in public transport.Officially cited as: Public Transp