Zakharov系统周期波的谱稳定性

IF 0.5 4区 数学 Q3 MATHEMATICS
S. Hakkaev, M. Stanislavova, A. Stefanov
{"title":"Zakharov系统周期波的谱稳定性","authors":"S. Hakkaev, M. Stanislavova, A. Stefanov","doi":"10.1063/5.0106133","DOIUrl":null,"url":null,"abstract":"This paper is concerned with the stability of periodic traveling waves of dnoidal type, of the Zakharov system. This problem was considered in a study of Angulo and Brango [Nonlinearity 24, 2913 (2011)]. In particular, it was shown that under a technical condition on the perturbation, such waves are orbitally stable, with respect to perturbations of the same period. Our main result fills up the gap created by the aforementioned technical condition. More precisely, we show that for all natural values of the parameters, the periodic dnoidal waves are spectrally stable.","PeriodicalId":50141,"journal":{"name":"Journal of Mathematical Physics Analysis Geometry","volume":"40 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectral stability of periodic waves for the Zakharov system\",\"authors\":\"S. Hakkaev, M. Stanislavova, A. Stefanov\",\"doi\":\"10.1063/5.0106133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is concerned with the stability of periodic traveling waves of dnoidal type, of the Zakharov system. This problem was considered in a study of Angulo and Brango [Nonlinearity 24, 2913 (2011)]. In particular, it was shown that under a technical condition on the perturbation, such waves are orbitally stable, with respect to perturbations of the same period. Our main result fills up the gap created by the aforementioned technical condition. More precisely, we show that for all natural values of the parameters, the periodic dnoidal waves are spectrally stable.\",\"PeriodicalId\":50141,\"journal\":{\"name\":\"Journal of Mathematical Physics Analysis Geometry\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Physics Analysis Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0106133\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Physics Analysis Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0106133","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了Zakharov系统的平面型周期行波的稳定性问题。Angulo和Brango的研究[非线性24,2913(2011)]考虑了这个问题。特别指出,在摄动的技术条件下,这种波相对于同周期的摄动是轨道稳定的。我们的主要成果填补了上述技术条件造成的空白。更准确地说,我们证明了对于参数的所有自然值,周期齿状波是谱稳定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spectral stability of periodic waves for the Zakharov system
This paper is concerned with the stability of periodic traveling waves of dnoidal type, of the Zakharov system. This problem was considered in a study of Angulo and Brango [Nonlinearity 24, 2913 (2011)]. In particular, it was shown that under a technical condition on the perturbation, such waves are orbitally stable, with respect to perturbations of the same period. Our main result fills up the gap created by the aforementioned technical condition. More precisely, we show that for all natural values of the parameters, the periodic dnoidal waves are spectrally stable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
20.00%
发文量
18
审稿时长
>12 weeks
期刊介绍: Journal of Mathematical Physics, Analysis, Geometry (JMPAG) publishes original papers and reviews on the main subjects: mathematical problems of modern physics; complex analysis and its applications; asymptotic problems of differential equations; spectral theory including inverse problems and their applications; geometry in large and differential geometry; functional analysis, theory of representations, and operator algebras including ergodic theory. The Journal aims at a broad readership of actively involved in scientific research and/or teaching at all levels scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信