扰动LUE和汉克尔矩阵的奇异线性统计量

IF 0.5 4区 数学 Q3 MATHEMATICS
Dan Wang, Mengkun Zhu, Yang Chen
{"title":"扰动LUE和汉克尔矩阵的奇异线性统计量","authors":"Dan Wang, Mengkun Zhu, Yang Chen","doi":"10.1063/5.0143858","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the Hankel determinant generated by a singular Laguerre weight with two parameters. Using ladder operators adapted to monic orthogonal polynomials associated with the weight, we show that one of the auxiliary quantities is a solution to the Painlevé III′ equation and derive the discrete σ-forms of two logarithmic partial derivatives of the Hankel determinant. We approximate the second-order differential equation satisfied by the monic orthogonal polynomials with respect to the singular Laguerre weight with two parameters to the double confluent Heun equation, leveraging the scaling limit for two parameters and the dimension of the Hankel determinant. In addition, we establish the asymptotic behavior of the smallest eigenvalue of large Hankel matrices associated with the weight with two parameters, using the Coulomb fluid method and the Rayleigh quotient.","PeriodicalId":50141,"journal":{"name":"Journal of Mathematical Physics Analysis Geometry","volume":"23 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A singular linear statistic for a perturbed LUE and the Hankel matrices\",\"authors\":\"Dan Wang, Mengkun Zhu, Yang Chen\",\"doi\":\"10.1063/5.0143858\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate the Hankel determinant generated by a singular Laguerre weight with two parameters. Using ladder operators adapted to monic orthogonal polynomials associated with the weight, we show that one of the auxiliary quantities is a solution to the Painlevé III′ equation and derive the discrete σ-forms of two logarithmic partial derivatives of the Hankel determinant. We approximate the second-order differential equation satisfied by the monic orthogonal polynomials with respect to the singular Laguerre weight with two parameters to the double confluent Heun equation, leveraging the scaling limit for two parameters and the dimension of the Hankel determinant. In addition, we establish the asymptotic behavior of the smallest eigenvalue of large Hankel matrices associated with the weight with two parameters, using the Coulomb fluid method and the Rayleigh quotient.\",\"PeriodicalId\":50141,\"journal\":{\"name\":\"Journal of Mathematical Physics Analysis Geometry\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Physics Analysis Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0143858\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Physics Analysis Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0143858","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了由两个参数的奇异拉盖尔权产生的汉克尔行列式。利用适用于与权相关的单正交多项式的阶梯算子,我们证明了其中一个辅助量是painlevev方程的解,并推导了Hankel行列式的两个对数偏导数的离散σ-形式。利用汉克尔行列式的维数和两个参数的标度极限,将双参数奇异拉盖尔权值的一元正交多项式所满足的二阶微分方程近似为双合流Heun方程。此外,我们利用库仑流体方法和瑞利商,建立了大汉克尔矩阵的最小特征值与两个参数权相关的渐近性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A singular linear statistic for a perturbed LUE and the Hankel matrices
In this paper, we investigate the Hankel determinant generated by a singular Laguerre weight with two parameters. Using ladder operators adapted to monic orthogonal polynomials associated with the weight, we show that one of the auxiliary quantities is a solution to the Painlevé III′ equation and derive the discrete σ-forms of two logarithmic partial derivatives of the Hankel determinant. We approximate the second-order differential equation satisfied by the monic orthogonal polynomials with respect to the singular Laguerre weight with two parameters to the double confluent Heun equation, leveraging the scaling limit for two parameters and the dimension of the Hankel determinant. In addition, we establish the asymptotic behavior of the smallest eigenvalue of large Hankel matrices associated with the weight with two parameters, using the Coulomb fluid method and the Rayleigh quotient.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
20.00%
发文量
18
审稿时长
>12 weeks
期刊介绍: Journal of Mathematical Physics, Analysis, Geometry (JMPAG) publishes original papers and reviews on the main subjects: mathematical problems of modern physics; complex analysis and its applications; asymptotic problems of differential equations; spectral theory including inverse problems and their applications; geometry in large and differential geometry; functional analysis, theory of representations, and operator algebras including ergodic theory. The Journal aims at a broad readership of actively involved in scientific research and/or teaching at all levels scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信