三维随机欧拉方程的欧拉-拉格朗日方法

IF 1 4区 数学 Q3 MATHEMATICS, APPLIED
F. Flandoli, Dejun Luo
{"title":"三维随机欧拉方程的欧拉-拉格朗日方法","authors":"F. Flandoli, Dejun Luo","doi":"10.3934/JGM.2019008","DOIUrl":null,"url":null,"abstract":"3D stochastic Euler equations with a special form of multiplicative noise are considered. A Constantin-Iyer type representation in Euler-Lagrangian form is given, based on stochastic characteristics. Local existence and uniqueness of solutions in suitable Hoelder spaces is proved from the Euler-Lagrangian formulation.","PeriodicalId":49161,"journal":{"name":"Journal of Geometric Mechanics","volume":"1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2018-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Euler-Lagrangian approach to 3D stochastic Euler equations\",\"authors\":\"F. Flandoli, Dejun Luo\",\"doi\":\"10.3934/JGM.2019008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"3D stochastic Euler equations with a special form of multiplicative noise are considered. A Constantin-Iyer type representation in Euler-Lagrangian form is given, based on stochastic characteristics. Local existence and uniqueness of solutions in suitable Hoelder spaces is proved from the Euler-Lagrangian formulation.\",\"PeriodicalId\":49161,\"journal\":{\"name\":\"Journal of Geometric Mechanics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2018-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geometric Mechanics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/JGM.2019008\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometric Mechanics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/JGM.2019008","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 15

摘要

考虑了具有特殊形式的乘性噪声的三维随机欧拉方程。基于随机特性,给出了欧拉-拉格朗日形式的Constantin-Iyer型表示。从欧拉-拉格朗日公式出发,证明了适当的Hoelder空间中解的局部存在唯一性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Euler-Lagrangian approach to 3D stochastic Euler equations
3D stochastic Euler equations with a special form of multiplicative noise are considered. A Constantin-Iyer type representation in Euler-Lagrangian form is given, based on stochastic characteristics. Local existence and uniqueness of solutions in suitable Hoelder spaces is proved from the Euler-Lagrangian formulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geometric Mechanics
Journal of Geometric Mechanics MATHEMATICS, APPLIED-PHYSICS, MATHEMATICAL
CiteScore
1.70
自引率
12.50%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Journal of Geometric Mechanics (JGM) aims to publish research articles devoted to geometric methods (in a broad sense) in mechanics and control theory, and intends to facilitate interaction between theory and applications. Advances in the following topics are welcomed by the journal: 1. Lagrangian and Hamiltonian mechanics 2. Symplectic and Poisson geometry and their applications to mechanics 3. Geometric and optimal control theory 4. Geometric and variational integration 5. Geometry of stochastic systems 6. Geometric methods in dynamical systems 7. Continuum mechanics 8. Classical field theory 9. Fluid mechanics 10. Infinite-dimensional dynamical systems 11. Quantum mechanics and quantum information theory 12. Applications in physics, technology, engineering and the biological sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信