T. Hosoi, Y. Odake, K. Chikaraishi, H. Arimura, N. Kitano, T. Shimura, H. Watanabe
{"title":"氧诱导的TiN/HfSiO栅层高钾降解","authors":"T. Hosoi, Y. Odake, K. Chikaraishi, H. Arimura, N. Kitano, T. Shimura, H. Watanabe","doi":"10.1109/SNW.2012.6243358","DOIUrl":null,"url":null,"abstract":"We have investigated the diffusion kinetics of Hf in TiN/HfSiO gate stacks. The Hf upward diffusion is found to be independent of interfacial SiO2 growth, but depends on the amount of oxygen in the gate stacks. It is also revealed that Hf diffusion into TiN electrode occurs at above 650°C and leads to high-k degradation.","PeriodicalId":6402,"journal":{"name":"2012 IEEE Silicon Nanoelectronics Workshop (SNW)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Oxygen-induced high-k degradation in TiN/HfSiO gate stacks\",\"authors\":\"T. Hosoi, Y. Odake, K. Chikaraishi, H. Arimura, N. Kitano, T. Shimura, H. Watanabe\",\"doi\":\"10.1109/SNW.2012.6243358\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have investigated the diffusion kinetics of Hf in TiN/HfSiO gate stacks. The Hf upward diffusion is found to be independent of interfacial SiO2 growth, but depends on the amount of oxygen in the gate stacks. It is also revealed that Hf diffusion into TiN electrode occurs at above 650°C and leads to high-k degradation.\",\"PeriodicalId\":6402,\"journal\":{\"name\":\"2012 IEEE Silicon Nanoelectronics Workshop (SNW)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Silicon Nanoelectronics Workshop (SNW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SNW.2012.6243358\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Silicon Nanoelectronics Workshop (SNW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SNW.2012.6243358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Oxygen-induced high-k degradation in TiN/HfSiO gate stacks
We have investigated the diffusion kinetics of Hf in TiN/HfSiO gate stacks. The Hf upward diffusion is found to be independent of interfacial SiO2 growth, but depends on the amount of oxygen in the gate stacks. It is also revealed that Hf diffusion into TiN electrode occurs at above 650°C and leads to high-k degradation.