{"title":"基于有限元数值槽的波浪与浮体非线性相互作用模拟","authors":"G. Wu, Z. Z. Hu","doi":"10.1098/rspa.2004.1302","DOIUrl":null,"url":null,"abstract":"Fully nonlinear water–wave interactions with a floating structure are investigated through a numerical towing tank. A wave maker is installed on one end of the tank while a numerical beach based on a combination of damping zone and Sommerfeld condition is adopted on the other side of the tank. A floating body is placed at a location in the tank, where it will be set into motion by the waves generated by the wave maker. The simulation is based on the velocity potential theory together with the finite–element method. The mesh used follows the deformation of the free surface and the body motion. Its structure is adjusted and the distribution of elements is completely rearranged when the motion is big to avoid an over–distorted grid. Auxiliary functions are introduced to decouple the nonlinear mutual dependence between the hydrodynamic force and the body motion. Extensive numerical results are provided for vertical circular cylinders and a simplified floating production, storage and offloading, for which meshes are obtained through an efficient scheme based on a two–dimensional tri–tree method.","PeriodicalId":20722,"journal":{"name":"Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2004-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"103","resultStr":"{\"title\":\"Simulation of nonlinear interactions between waves and floating bodies through a finite-element-based numerical tank\",\"authors\":\"G. Wu, Z. Z. Hu\",\"doi\":\"10.1098/rspa.2004.1302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fully nonlinear water–wave interactions with a floating structure are investigated through a numerical towing tank. A wave maker is installed on one end of the tank while a numerical beach based on a combination of damping zone and Sommerfeld condition is adopted on the other side of the tank. A floating body is placed at a location in the tank, where it will be set into motion by the waves generated by the wave maker. The simulation is based on the velocity potential theory together with the finite–element method. The mesh used follows the deformation of the free surface and the body motion. Its structure is adjusted and the distribution of elements is completely rearranged when the motion is big to avoid an over–distorted grid. Auxiliary functions are introduced to decouple the nonlinear mutual dependence between the hydrodynamic force and the body motion. Extensive numerical results are provided for vertical circular cylinders and a simplified floating production, storage and offloading, for which meshes are obtained through an efficient scheme based on a two–dimensional tri–tree method.\",\"PeriodicalId\":20722,\"journal\":{\"name\":\"Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"103\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1098/rspa.2004.1302\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1098/rspa.2004.1302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Simulation of nonlinear interactions between waves and floating bodies through a finite-element-based numerical tank
Fully nonlinear water–wave interactions with a floating structure are investigated through a numerical towing tank. A wave maker is installed on one end of the tank while a numerical beach based on a combination of damping zone and Sommerfeld condition is adopted on the other side of the tank. A floating body is placed at a location in the tank, where it will be set into motion by the waves generated by the wave maker. The simulation is based on the velocity potential theory together with the finite–element method. The mesh used follows the deformation of the free surface and the body motion. Its structure is adjusted and the distribution of elements is completely rearranged when the motion is big to avoid an over–distorted grid. Auxiliary functions are introduced to decouple the nonlinear mutual dependence between the hydrodynamic force and the body motion. Extensive numerical results are provided for vertical circular cylinders and a simplified floating production, storage and offloading, for which meshes are obtained through an efficient scheme based on a two–dimensional tri–tree method.
期刊介绍:
Proceedings A publishes articles across the chemical, computational, Earth, engineering, mathematical, and physical sciences. The articles published are high-quality, original, fundamental articles of interest to a wide range of scientists, and often have long citation half-lives. As well as established disciplines, we encourage emerging and interdisciplinary areas.