一类具有快速振荡的随机弱阻尼波动方程的有效动力学

IF 0.5 4区 数学 Q3 MATHEMATICS
Jin-Wei Zhao, B. Ge, Lu Liu
{"title":"一类具有快速振荡的随机弱阻尼波动方程的有效动力学","authors":"Jin-Wei Zhao, B. Ge, Lu Liu","doi":"10.1063/5.0137730","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is to consider the effective dynamic behavior of a class of stochastic weakly damped wave equations with a fast oscillation under the non-Lipschitz condition. We show that the slow component converges to the solution of the corresponding average equation. The result presented here extends the existing results from the Lipschitz to non-Lipschitz condition, which is a much weaker condition with a wider range of applications.","PeriodicalId":50141,"journal":{"name":"Journal of Mathematical Physics Analysis Geometry","volume":"58 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effective dynamics for a class of stochastic weakly damped wave equation with a fast oscillation\",\"authors\":\"Jin-Wei Zhao, B. Ge, Lu Liu\",\"doi\":\"10.1063/5.0137730\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this paper is to consider the effective dynamic behavior of a class of stochastic weakly damped wave equations with a fast oscillation under the non-Lipschitz condition. We show that the slow component converges to the solution of the corresponding average equation. The result presented here extends the existing results from the Lipschitz to non-Lipschitz condition, which is a much weaker condition with a wider range of applications.\",\"PeriodicalId\":50141,\"journal\":{\"name\":\"Journal of Mathematical Physics Analysis Geometry\",\"volume\":\"58 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Physics Analysis Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0137730\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Physics Analysis Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0137730","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

研究了一类具有快速振荡的随机弱阻尼波动方程在非lipschitz条件下的有效动力学行为。我们证明了慢分量收敛于相应的平均方程的解。本文的结果将已有的Lipschitz条件的结果扩展到非Lipschitz条件,这是一个弱得多的条件,应用范围更广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effective dynamics for a class of stochastic weakly damped wave equation with a fast oscillation
The purpose of this paper is to consider the effective dynamic behavior of a class of stochastic weakly damped wave equations with a fast oscillation under the non-Lipschitz condition. We show that the slow component converges to the solution of the corresponding average equation. The result presented here extends the existing results from the Lipschitz to non-Lipschitz condition, which is a much weaker condition with a wider range of applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
20.00%
发文量
18
审稿时长
>12 weeks
期刊介绍: Journal of Mathematical Physics, Analysis, Geometry (JMPAG) publishes original papers and reviews on the main subjects: mathematical problems of modern physics; complex analysis and its applications; asymptotic problems of differential equations; spectral theory including inverse problems and their applications; geometry in large and differential geometry; functional analysis, theory of representations, and operator algebras including ergodic theory. The Journal aims at a broad readership of actively involved in scientific research and/or teaching at all levels scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信