{"title":"在预图像化(001)硅衬底上选择性形成的硅纳米线阵列的制备","authors":"S. Cheng, C. Lo","doi":"10.1109/INEC.2010.5424985","DOIUrl":null,"url":null,"abstract":"We report here the successful fabrication of large-area size-and site-controlled periodic arrays of Si nanowires by employing the colloidal nanosphere lithography technique and Au-assisted selective chemical etching process. The vertically-aligned Si nanowires with diameters down to 190 nm and 90 nm were selectively formed at particular positions on the pre-patterned (001)Si substrates. All the Si nanowires produced were single crystalline in nature and their axial orientations were identified to be parallel to the [001] direction. The experimental results demonstrated that with suitable etching conditions, these synthesis schemes provide the capability to fabricate a variety of periodic arrays of Si-based nanodevices.","PeriodicalId":6390,"journal":{"name":"2010 3rd International Nanoelectronics Conference (INEC)","volume":"3 1","pages":"519-520"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication of Si nanowire arrays selectively formed on pre-patterned (001)Si substrates\",\"authors\":\"S. Cheng, C. Lo\",\"doi\":\"10.1109/INEC.2010.5424985\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report here the successful fabrication of large-area size-and site-controlled periodic arrays of Si nanowires by employing the colloidal nanosphere lithography technique and Au-assisted selective chemical etching process. The vertically-aligned Si nanowires with diameters down to 190 nm and 90 nm were selectively formed at particular positions on the pre-patterned (001)Si substrates. All the Si nanowires produced were single crystalline in nature and their axial orientations were identified to be parallel to the [001] direction. The experimental results demonstrated that with suitable etching conditions, these synthesis schemes provide the capability to fabricate a variety of periodic arrays of Si-based nanodevices.\",\"PeriodicalId\":6390,\"journal\":{\"name\":\"2010 3rd International Nanoelectronics Conference (INEC)\",\"volume\":\"3 1\",\"pages\":\"519-520\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 3rd International Nanoelectronics Conference (INEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INEC.2010.5424985\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 3rd International Nanoelectronics Conference (INEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INEC.2010.5424985","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fabrication of Si nanowire arrays selectively formed on pre-patterned (001)Si substrates
We report here the successful fabrication of large-area size-and site-controlled periodic arrays of Si nanowires by employing the colloidal nanosphere lithography technique and Au-assisted selective chemical etching process. The vertically-aligned Si nanowires with diameters down to 190 nm and 90 nm were selectively formed at particular positions on the pre-patterned (001)Si substrates. All the Si nanowires produced were single crystalline in nature and their axial orientations were identified to be parallel to the [001] direction. The experimental results demonstrated that with suitable etching conditions, these synthesis schemes provide the capability to fabricate a variety of periodic arrays of Si-based nanodevices.