D. H. V. Dorp, J. Sniekers, G. Bonneux, L. Tous, R. Russell, J. Szlufcik, H. Philipsen
{"title":"光致电化学沉积镍用于硅太阳能电池的加工","authors":"D. H. V. Dorp, J. Sniekers, G. Bonneux, L. Tous, R. Russell, J. Szlufcik, H. Philipsen","doi":"10.1149/2.006404SSL","DOIUrl":null,"url":null,"abstract":"This work outlines the general electrochemical features of the Ni light-induced deposition process. Typical observations for the deposition on textured solar cells are discussed and compared to planar n-Si (100) electrodes. The electrochemical measurements clearly show that after nucleation, Ni-on-Ni deposition is favored over Ni-on-Si, resulting in hemispherical growth. This observation is attributed to a kinetic effect and may be a disadvantage for the growth of ultra-thin contacting layers. In addition, the simultaneous metallization of fingers and busbars shows a significant non-uniformity due to an inevitable variation in current distribution which leads to an enhanced deposition rate for the narrowest features.","PeriodicalId":11423,"journal":{"name":"ECS Solid State Letters","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Light-Induced Electrochemical Deposition of Ni for Si Solar Cell Processing\",\"authors\":\"D. H. V. Dorp, J. Sniekers, G. Bonneux, L. Tous, R. Russell, J. Szlufcik, H. Philipsen\",\"doi\":\"10.1149/2.006404SSL\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work outlines the general electrochemical features of the Ni light-induced deposition process. Typical observations for the deposition on textured solar cells are discussed and compared to planar n-Si (100) electrodes. The electrochemical measurements clearly show that after nucleation, Ni-on-Ni deposition is favored over Ni-on-Si, resulting in hemispherical growth. This observation is attributed to a kinetic effect and may be a disadvantage for the growth of ultra-thin contacting layers. In addition, the simultaneous metallization of fingers and busbars shows a significant non-uniformity due to an inevitable variation in current distribution which leads to an enhanced deposition rate for the narrowest features.\",\"PeriodicalId\":11423,\"journal\":{\"name\":\"ECS Solid State Letters\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ECS Solid State Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1149/2.006404SSL\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ECS Solid State Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1149/2.006404SSL","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Light-Induced Electrochemical Deposition of Ni for Si Solar Cell Processing
This work outlines the general electrochemical features of the Ni light-induced deposition process. Typical observations for the deposition on textured solar cells are discussed and compared to planar n-Si (100) electrodes. The electrochemical measurements clearly show that after nucleation, Ni-on-Ni deposition is favored over Ni-on-Si, resulting in hemispherical growth. This observation is attributed to a kinetic effect and may be a disadvantage for the growth of ultra-thin contacting layers. In addition, the simultaneous metallization of fingers and busbars shows a significant non-uniformity due to an inevitable variation in current distribution which leads to an enhanced deposition rate for the narrowest features.