基于第一类拉格朗日方程的六边形并联机器人逆动力学

Xiaorong Wang, Yaping Tian
{"title":"基于第一类拉格朗日方程的六边形并联机器人逆动力学","authors":"Xiaorong Wang, Yaping Tian","doi":"10.1109/MACE.2010.5535969","DOIUrl":null,"url":null,"abstract":"Based on the Lagrangian equations of first type, the coordinate system is constructed according to the mechanical characteristics of Hexa Parallel Robot. The generalized coordinates are composed of six actuated independent coordinates plus redundant coordinates denoting the position and three Euler angles of active platform. After formulating the Lagrangian function, combining the constraint equations, the dynamics model of Hexa Parallel Robot is established.","PeriodicalId":6349,"journal":{"name":"2010 International Conference on Mechanic Automation and Control Engineering","volume":"EM-22 1","pages":"3712-3716"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Inverse dynamics of Hexa Parallel Robot based on the Lagrangian equations of first type\",\"authors\":\"Xiaorong Wang, Yaping Tian\",\"doi\":\"10.1109/MACE.2010.5535969\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on the Lagrangian equations of first type, the coordinate system is constructed according to the mechanical characteristics of Hexa Parallel Robot. The generalized coordinates are composed of six actuated independent coordinates plus redundant coordinates denoting the position and three Euler angles of active platform. After formulating the Lagrangian function, combining the constraint equations, the dynamics model of Hexa Parallel Robot is established.\",\"PeriodicalId\":6349,\"journal\":{\"name\":\"2010 International Conference on Mechanic Automation and Control Engineering\",\"volume\":\"EM-22 1\",\"pages\":\"3712-3716\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Mechanic Automation and Control Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MACE.2010.5535969\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Mechanic Automation and Control Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MACE.2010.5535969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在第一类拉格朗日方程的基础上,根据六体并联机器人的力学特性,建立了六体并联机器人的坐标系。广义坐标由6个驱动独立坐标加上表示主动平台位置和3个欧拉角的冗余坐标组成。在构造拉格朗日函数的基础上,结合约束方程,建立了六自由度并联机器人的动力学模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inverse dynamics of Hexa Parallel Robot based on the Lagrangian equations of first type
Based on the Lagrangian equations of first type, the coordinate system is constructed according to the mechanical characteristics of Hexa Parallel Robot. The generalized coordinates are composed of six actuated independent coordinates plus redundant coordinates denoting the position and three Euler angles of active platform. After formulating the Lagrangian function, combining the constraint equations, the dynamics model of Hexa Parallel Robot is established.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信