Sandeep Choudhury, Anik Banerjee, S. Majumder, A. Roychowdhury
{"title":"用于治疗颌面骨折的患者专用微型钢板的设计与研制——有限元研究","authors":"Sandeep Choudhury, Anik Banerjee, S. Majumder, A. Roychowdhury","doi":"10.1115/1.4062509","DOIUrl":null,"url":null,"abstract":"\n Fractures of the maxillofacial region are prevalent in both developed and developing nations. Maxillofacial fractures primarily occur as a result of incidents such as car crashes, physical assaults, and attacks. Although using miniplates to treat maxillofacial fractures is a widely accepted practice, the challenge lies in selecting the appropriate miniplate size that is tailored to the specific dimensions of the fracture in each patient. The study aims to evaluate and determine the most suitable design between a 2-hole miniplate and a 4-hole miniplate for securing a fractured mandible, with the ultimate goal of creating a customized solution for each patient. A mandible model is chosen with a diagonal length of 82mm and created perpendicular fracture gaps measuring 1mm to 3mm on the left buccolingual section of the solid model. A 2-hole and a 4-hole miniplate are designed with different thicknesses (ranging from 1mm to 2mm) and gap distances (ranging from 6mm to 12mm). The miniplates were put together in a model of the mandible. To test their effectiveness, the combination of the mandible model and plates was subjected to various muscle forces, as well as the force of biting, using finite element analysis. At the mandible location, the four-hole miniplate implantation exhibits superior stabilization in comparison to the two-hole miniplate assembly. The miniplate's size and dimensions can be adjusted depending on the size of the fracture in the mandible, resulting in a patient-specific solution for the implantation of miniplate in the mandible.","PeriodicalId":73734,"journal":{"name":"Journal of engineering and science in medical diagnostics and therapy","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Development of Patient-specific Miniplate for the Treatment of Maxillofacial Fractures-A Finite Element Study\",\"authors\":\"Sandeep Choudhury, Anik Banerjee, S. Majumder, A. Roychowdhury\",\"doi\":\"10.1115/1.4062509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Fractures of the maxillofacial region are prevalent in both developed and developing nations. Maxillofacial fractures primarily occur as a result of incidents such as car crashes, physical assaults, and attacks. Although using miniplates to treat maxillofacial fractures is a widely accepted practice, the challenge lies in selecting the appropriate miniplate size that is tailored to the specific dimensions of the fracture in each patient. The study aims to evaluate and determine the most suitable design between a 2-hole miniplate and a 4-hole miniplate for securing a fractured mandible, with the ultimate goal of creating a customized solution for each patient. A mandible model is chosen with a diagonal length of 82mm and created perpendicular fracture gaps measuring 1mm to 3mm on the left buccolingual section of the solid model. A 2-hole and a 4-hole miniplate are designed with different thicknesses (ranging from 1mm to 2mm) and gap distances (ranging from 6mm to 12mm). The miniplates were put together in a model of the mandible. To test their effectiveness, the combination of the mandible model and plates was subjected to various muscle forces, as well as the force of biting, using finite element analysis. At the mandible location, the four-hole miniplate implantation exhibits superior stabilization in comparison to the two-hole miniplate assembly. The miniplate's size and dimensions can be adjusted depending on the size of the fracture in the mandible, resulting in a patient-specific solution for the implantation of miniplate in the mandible.\",\"PeriodicalId\":73734,\"journal\":{\"name\":\"Journal of engineering and science in medical diagnostics and therapy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of engineering and science in medical diagnostics and therapy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4062509\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of engineering and science in medical diagnostics and therapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4062509","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design and Development of Patient-specific Miniplate for the Treatment of Maxillofacial Fractures-A Finite Element Study
Fractures of the maxillofacial region are prevalent in both developed and developing nations. Maxillofacial fractures primarily occur as a result of incidents such as car crashes, physical assaults, and attacks. Although using miniplates to treat maxillofacial fractures is a widely accepted practice, the challenge lies in selecting the appropriate miniplate size that is tailored to the specific dimensions of the fracture in each patient. The study aims to evaluate and determine the most suitable design between a 2-hole miniplate and a 4-hole miniplate for securing a fractured mandible, with the ultimate goal of creating a customized solution for each patient. A mandible model is chosen with a diagonal length of 82mm and created perpendicular fracture gaps measuring 1mm to 3mm on the left buccolingual section of the solid model. A 2-hole and a 4-hole miniplate are designed with different thicknesses (ranging from 1mm to 2mm) and gap distances (ranging from 6mm to 12mm). The miniplates were put together in a model of the mandible. To test their effectiveness, the combination of the mandible model and plates was subjected to various muscle forces, as well as the force of biting, using finite element analysis. At the mandible location, the four-hole miniplate implantation exhibits superior stabilization in comparison to the two-hole miniplate assembly. The miniplate's size and dimensions can be adjusted depending on the size of the fracture in the mandible, resulting in a patient-specific solution for the implantation of miniplate in the mandible.