{"title":"利用及物性学习预算上的人物再识别模型","authors":"Sourya Roy, S. Paul, N. Young, A. Roy-Chowdhury","doi":"10.1109/CVPR.2018.00738","DOIUrl":null,"url":null,"abstract":"Minimization of labeling effort for person re-identification in camera networks is an important problem as most of the existing popular methods are supervised and they require large amount of manual annotations, acquiring which is a tedious job. In this work, we focus on this labeling effort minimization problem and approach it as a subset selection task where the objective is to select an optimal subset of image-pairs for labeling without compromising performance. Towards this goal, our proposed scheme first represents any camera network (with k number of cameras) as an edge weighted complete k-partite graph where each vertex denotes a person and similarity scores between persons are used as edge-weights. Then in the second stage, our algorithm selects an optimal subset of pairs by solving a triangle free subgraph maximization problem on the k-partite graph. This sub-graph weight maximization problem is NP-hard (at least for k = 4) which means for large datasets the optimization problem becomes intractable. In order to make our framework scalable, we propose two polynomial time approximately-optimal algorithms. The first algorithm is a 1/2-approximation algorithm which runs in linear time in the number of edges. The second algorithm is a greedy algorithm with sub-quadratic (in number of edges) time-complexity. Experiments on three state-of-the-art datasets depict that the proposed approach requires on an average only 8-15% manually labeled pairs in order to achieve the performance when all the pairs are manually annotated.","PeriodicalId":6564,"journal":{"name":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition","volume":"4 1","pages":"7064-7072"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Exploiting Transitivity for Learning Person Re-identification Models on a Budget\",\"authors\":\"Sourya Roy, S. Paul, N. Young, A. Roy-Chowdhury\",\"doi\":\"10.1109/CVPR.2018.00738\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Minimization of labeling effort for person re-identification in camera networks is an important problem as most of the existing popular methods are supervised and they require large amount of manual annotations, acquiring which is a tedious job. In this work, we focus on this labeling effort minimization problem and approach it as a subset selection task where the objective is to select an optimal subset of image-pairs for labeling without compromising performance. Towards this goal, our proposed scheme first represents any camera network (with k number of cameras) as an edge weighted complete k-partite graph where each vertex denotes a person and similarity scores between persons are used as edge-weights. Then in the second stage, our algorithm selects an optimal subset of pairs by solving a triangle free subgraph maximization problem on the k-partite graph. This sub-graph weight maximization problem is NP-hard (at least for k = 4) which means for large datasets the optimization problem becomes intractable. In order to make our framework scalable, we propose two polynomial time approximately-optimal algorithms. The first algorithm is a 1/2-approximation algorithm which runs in linear time in the number of edges. The second algorithm is a greedy algorithm with sub-quadratic (in number of edges) time-complexity. Experiments on three state-of-the-art datasets depict that the proposed approach requires on an average only 8-15% manually labeled pairs in order to achieve the performance when all the pairs are manually annotated.\",\"PeriodicalId\":6564,\"journal\":{\"name\":\"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition\",\"volume\":\"4 1\",\"pages\":\"7064-7072\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2018.00738\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2018.00738","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Exploiting Transitivity for Learning Person Re-identification Models on a Budget
Minimization of labeling effort for person re-identification in camera networks is an important problem as most of the existing popular methods are supervised and they require large amount of manual annotations, acquiring which is a tedious job. In this work, we focus on this labeling effort minimization problem and approach it as a subset selection task where the objective is to select an optimal subset of image-pairs for labeling without compromising performance. Towards this goal, our proposed scheme first represents any camera network (with k number of cameras) as an edge weighted complete k-partite graph where each vertex denotes a person and similarity scores between persons are used as edge-weights. Then in the second stage, our algorithm selects an optimal subset of pairs by solving a triangle free subgraph maximization problem on the k-partite graph. This sub-graph weight maximization problem is NP-hard (at least for k = 4) which means for large datasets the optimization problem becomes intractable. In order to make our framework scalable, we propose two polynomial time approximately-optimal algorithms. The first algorithm is a 1/2-approximation algorithm which runs in linear time in the number of edges. The second algorithm is a greedy algorithm with sub-quadratic (in number of edges) time-complexity. Experiments on three state-of-the-art datasets depict that the proposed approach requires on an average only 8-15% manually labeled pairs in order to achieve the performance when all the pairs are manually annotated.