利用化学机械纳米传感器和太阳能电池的自供电、超可靠氢传感器

Min-Ho Seo, K. Kang, Jae‐Shin Lee, Y. Jeong, Seunghye Lee, I. Park, Jun‐Bo Yoon
{"title":"利用化学机械纳米传感器和太阳能电池的自供电、超可靠氢传感器","authors":"Min-Ho Seo, K. Kang, Jae‐Shin Lee, Y. Jeong, Seunghye Lee, I. Park, Jun‐Bo Yoon","doi":"10.1109/TRANSDUCERS.2019.8808208","DOIUrl":null,"url":null,"abstract":"This paper first reports a highly reliable self-powered hydrogen (H2) sensor employing a palladium (Pd)-based nano-transducer. The developed sensor is based on the principle of a novel chemomechanical mechanism of the Pd nano-transducer exploiting a solar cell. We theoretically and experimentally demonstrated that the proposed device can achieve highly durable operation for a wide range of H2 concentrations with remarkable sensitivity (3.1% at 2%-H2) and response time (111 s at 2%-H2) without external power. Significantly, the proposed sensor, which has a novel sensing mechanism, maintains high sensing performance for more than 150 cycles under various H2 conditions (0.5 to 2%).","PeriodicalId":6672,"journal":{"name":"2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII)","volume":"21 1","pages":"334-337"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Self-Powered, Ultra-Reliable Hydrogen Sensor Exploiting Chemomechanical Nano-Transducer and Solar-Cell\",\"authors\":\"Min-Ho Seo, K. Kang, Jae‐Shin Lee, Y. Jeong, Seunghye Lee, I. Park, Jun‐Bo Yoon\",\"doi\":\"10.1109/TRANSDUCERS.2019.8808208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper first reports a highly reliable self-powered hydrogen (H2) sensor employing a palladium (Pd)-based nano-transducer. The developed sensor is based on the principle of a novel chemomechanical mechanism of the Pd nano-transducer exploiting a solar cell. We theoretically and experimentally demonstrated that the proposed device can achieve highly durable operation for a wide range of H2 concentrations with remarkable sensitivity (3.1% at 2%-H2) and response time (111 s at 2%-H2) without external power. Significantly, the proposed sensor, which has a novel sensing mechanism, maintains high sensing performance for more than 150 cycles under various H2 conditions (0.5 to 2%).\",\"PeriodicalId\":6672,\"journal\":{\"name\":\"2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII)\",\"volume\":\"21 1\",\"pages\":\"334-337\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TRANSDUCERS.2019.8808208\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TRANSDUCERS.2019.8808208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文首次报道了一种采用钯基纳米换能器的高可靠性自供电氢(H2)传感器。所开发的传感器是基于一种新的化学-力学机制的Pd纳米换能器利用太阳能电池的原理。我们的理论和实验证明,该装置可以在没有外部电源的情况下在大范围的H2浓度下实现高度耐用的工作,具有显著的灵敏度(2%-H2时3.1%)和响应时间(2%-H2时111 s)。值得注意的是,该传感器具有新颖的传感机制,在不同H2条件下(0.5%至2%)可保持150多个循环的高传感性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Self-Powered, Ultra-Reliable Hydrogen Sensor Exploiting Chemomechanical Nano-Transducer and Solar-Cell
This paper first reports a highly reliable self-powered hydrogen (H2) sensor employing a palladium (Pd)-based nano-transducer. The developed sensor is based on the principle of a novel chemomechanical mechanism of the Pd nano-transducer exploiting a solar cell. We theoretically and experimentally demonstrated that the proposed device can achieve highly durable operation for a wide range of H2 concentrations with remarkable sensitivity (3.1% at 2%-H2) and response time (111 s at 2%-H2) without external power. Significantly, the proposed sensor, which has a novel sensing mechanism, maintains high sensing performance for more than 150 cycles under various H2 conditions (0.5 to 2%).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信