{"title":"圆板的数值和实验屈曲分析","authors":"H. Akbulut, M. F. Bingöl","doi":"10.1007/s40799-023-00667-9","DOIUrl":null,"url":null,"abstract":"<div><p>This paper deals with the determination of numerical and experimental buckling loads for circular plates. In the study, plates made of isotropic material and laminated composites were taken into consideration. For the experimental part of the study, a buckling apparatus for circular plates (BACIP) was designed and manufactured to apply radial compression on plates simply supported along the outer edge, which was the most important aspect of the study. Experimental buckling loads were determined by connecting this apparatus to a tension machine. ANSYS software based on the Finite Element Method (FEM) and the analytical buckling load formula found in textbooks were also used for the determination of the numerical and analytical buckling loads. The effects of parameters such as plate thickness, number of layers, cutout sizes, and so on on critical buckling loads were investigated within the scope of the work. Comparisons of analytical, theoretical and experimental buckling loads were presented in both graphical and tabular form. The results of the experimental and theoretical buckling were found to be comparatively compatible.</p></div>","PeriodicalId":553,"journal":{"name":"Experimental Techniques","volume":"48 3","pages":"439 - 448"},"PeriodicalIF":1.5000,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical and Experimental Buckling Analysis for Circular Plates\",\"authors\":\"H. Akbulut, M. F. Bingöl\",\"doi\":\"10.1007/s40799-023-00667-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper deals with the determination of numerical and experimental buckling loads for circular plates. In the study, plates made of isotropic material and laminated composites were taken into consideration. For the experimental part of the study, a buckling apparatus for circular plates (BACIP) was designed and manufactured to apply radial compression on plates simply supported along the outer edge, which was the most important aspect of the study. Experimental buckling loads were determined by connecting this apparatus to a tension machine. ANSYS software based on the Finite Element Method (FEM) and the analytical buckling load formula found in textbooks were also used for the determination of the numerical and analytical buckling loads. The effects of parameters such as plate thickness, number of layers, cutout sizes, and so on on critical buckling loads were investigated within the scope of the work. Comparisons of analytical, theoretical and experimental buckling loads were presented in both graphical and tabular form. The results of the experimental and theoretical buckling were found to be comparatively compatible.</p></div>\",\"PeriodicalId\":553,\"journal\":{\"name\":\"Experimental Techniques\",\"volume\":\"48 3\",\"pages\":\"439 - 448\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Techniques\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40799-023-00667-9\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Techniques","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s40799-023-00667-9","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Numerical and Experimental Buckling Analysis for Circular Plates
This paper deals with the determination of numerical and experimental buckling loads for circular plates. In the study, plates made of isotropic material and laminated composites were taken into consideration. For the experimental part of the study, a buckling apparatus for circular plates (BACIP) was designed and manufactured to apply radial compression on plates simply supported along the outer edge, which was the most important aspect of the study. Experimental buckling loads were determined by connecting this apparatus to a tension machine. ANSYS software based on the Finite Element Method (FEM) and the analytical buckling load formula found in textbooks were also used for the determination of the numerical and analytical buckling loads. The effects of parameters such as plate thickness, number of layers, cutout sizes, and so on on critical buckling loads were investigated within the scope of the work. Comparisons of analytical, theoretical and experimental buckling loads were presented in both graphical and tabular form. The results of the experimental and theoretical buckling were found to be comparatively compatible.
期刊介绍:
Experimental Techniques is a bimonthly interdisciplinary publication of the Society for Experimental Mechanics focusing on the development, application and tutorial of experimental mechanics techniques.
The purpose for Experimental Techniques is to promote pedagogical, technical and practical advancements in experimental mechanics while supporting the Society''s mission and commitment to interdisciplinary application, research and development, education, and active promotion of experimental methods to:
- Increase the knowledge of physical phenomena
- Further the understanding of the behavior of materials, structures, and systems
- Provide the necessary physical observations necessary to improve and assess new analytical and computational approaches.