V. Krúpa, N. Tymoshenko, V. Kobelnyk, I. Petrechko
{"title":"车削时进给对切向切削力影响的概率统计估计方法","authors":"V. Krúpa, N. Tymoshenko, V. Kobelnyk, I. Petrechko","doi":"10.5604/01.3001.0016.1480","DOIUrl":null,"url":null,"abstract":"This research aims to develop the mathematical model and propose a method for estimating the feed stochasticity impact on the tangential cutting force during turning. The main reason for this research is that the existing models for determining the tangential component of the cutting force do not take into account the stochasticity of the feed rate.\n\nMeasurements of tangential cutting force during turning on general-purpose lathes with known feed dispersion parameters were made. The mathematical model was developed, and dispersion characteristics (mean value, dispersion and mean square deviation) of the tangential cutting force component depending on the corresponding dispersion characteristics of the feed rate were obtained. The method of assessing the impact of stochasticity of the feed rate on the tangential cutting force is proposed.\n\nAs the result of the carried-out investigations, it is proved that the stochasticity of the feed rate affects the dispersion of the tangential cutting force during turning. For specific conditions, the share of feed stochasticity in the dispersion of tangential cutting force component is from 40 to 60% and should be taken into account while prescribing rational cutting modes.\n\nThe obtained results make it possible to adjust the cutting modes, particularly the amount of feed, under the conditions of real equipment to ensure certain power characteristics of the cutting process to prevent overloads during cutting. This investigation benefits to the establishment of additional factors affecting oscillations in the cutting process.\n\nThe probabilistic-statistical approach is used in this investigation in order to prove that the stochasticity of the feed rate affects the dispersion of the tangential cutting force component.\n\n","PeriodicalId":14825,"journal":{"name":"Journal of Achievements in Materials and Manufacturing Engineering","volume":"115 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probability-statistical estimation method of feed influence on the tangential cutting force under turning\",\"authors\":\"V. Krúpa, N. Tymoshenko, V. Kobelnyk, I. Petrechko\",\"doi\":\"10.5604/01.3001.0016.1480\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research aims to develop the mathematical model and propose a method for estimating the feed stochasticity impact on the tangential cutting force during turning. The main reason for this research is that the existing models for determining the tangential component of the cutting force do not take into account the stochasticity of the feed rate.\\n\\nMeasurements of tangential cutting force during turning on general-purpose lathes with known feed dispersion parameters were made. The mathematical model was developed, and dispersion characteristics (mean value, dispersion and mean square deviation) of the tangential cutting force component depending on the corresponding dispersion characteristics of the feed rate were obtained. The method of assessing the impact of stochasticity of the feed rate on the tangential cutting force is proposed.\\n\\nAs the result of the carried-out investigations, it is proved that the stochasticity of the feed rate affects the dispersion of the tangential cutting force during turning. For specific conditions, the share of feed stochasticity in the dispersion of tangential cutting force component is from 40 to 60% and should be taken into account while prescribing rational cutting modes.\\n\\nThe obtained results make it possible to adjust the cutting modes, particularly the amount of feed, under the conditions of real equipment to ensure certain power characteristics of the cutting process to prevent overloads during cutting. This investigation benefits to the establishment of additional factors affecting oscillations in the cutting process.\\n\\nThe probabilistic-statistical approach is used in this investigation in order to prove that the stochasticity of the feed rate affects the dispersion of the tangential cutting force component.\\n\\n\",\"PeriodicalId\":14825,\"journal\":{\"name\":\"Journal of Achievements in Materials and Manufacturing Engineering\",\"volume\":\"115 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Achievements in Materials and Manufacturing Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5604/01.3001.0016.1480\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Achievements in Materials and Manufacturing Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5604/01.3001.0016.1480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Probability-statistical estimation method of feed influence on the tangential cutting force under turning
This research aims to develop the mathematical model and propose a method for estimating the feed stochasticity impact on the tangential cutting force during turning. The main reason for this research is that the existing models for determining the tangential component of the cutting force do not take into account the stochasticity of the feed rate.
Measurements of tangential cutting force during turning on general-purpose lathes with known feed dispersion parameters were made. The mathematical model was developed, and dispersion characteristics (mean value, dispersion and mean square deviation) of the tangential cutting force component depending on the corresponding dispersion characteristics of the feed rate were obtained. The method of assessing the impact of stochasticity of the feed rate on the tangential cutting force is proposed.
As the result of the carried-out investigations, it is proved that the stochasticity of the feed rate affects the dispersion of the tangential cutting force during turning. For specific conditions, the share of feed stochasticity in the dispersion of tangential cutting force component is from 40 to 60% and should be taken into account while prescribing rational cutting modes.
The obtained results make it possible to adjust the cutting modes, particularly the amount of feed, under the conditions of real equipment to ensure certain power characteristics of the cutting process to prevent overloads during cutting. This investigation benefits to the establishment of additional factors affecting oscillations in the cutting process.
The probabilistic-statistical approach is used in this investigation in order to prove that the stochasticity of the feed rate affects the dispersion of the tangential cutting force component.
期刊介绍:
The Journal of Achievements in Materials and Manufacturing Engineering has been published by the Association for Computational Materials Science and Surface Engineering in collaboration with the World Academy of Materials and Manufacturing Engineering WAMME and the Section Metallic Materials of the Committee of Materials Science of the Polish Academy of Sciences as a monthly. It has 12 points which was received during the evaluation by the Ministry of Science and Higher Education journals and ICV 2017:100 on the ICI Journals Master list announced by the Index Copernicus. It is a continuation of "Proceedings on Achievements in Mechanical and Materials Engineering" published in 1992-2005. Scope: Materials[...] Properties[...] Methodology of Research[...] Analysis and Modelling[...] Manufacturing and Processingv Biomedical and Dental Engineering and Materials[...] Cleaner Production[...] Industrial Mangement and Organisation [...] Education and Research Trends[...]