{"title":"基于专业技能组合的数据科学就业人力资源分析与薪酬预测","authors":"Tee Zhen Quan, Mafas Raheem","doi":"10.18517/ijods.4.1.40-59.2023","DOIUrl":null,"url":null,"abstract":"The research aims to perform meaningful human resource analysis on data science employment using the strong influences of specialized skills set with assisting salary prediction. With explosive big data development, a data science job shortage has occurred with high accurate recruitment demand to hire suitable professionals for specific data science roles. To achieve such outcomes, the current data science employment trends were analyzed based on a secondary dataset. Useful analytics insights for job securement and better career development were provided through the main dashboard. Besides, the significant in-demand data science skill variables were also identified for further effective model building. Particularly, certain data pre-processing techniques were performed extensively to prepare and optimize the dataset for the mentioned human resource analytics purposes. The ensemble model was selected as the most suitable salary prediction model with the lowest Average Squared Error (ASE) on validation. Despite the low prediction accuracy caused by numerous filtered skill variables, the salary prediction model’s main objective was to interpret the relationships between input variables and the target salary levels variable. Overall, the results from both the human resource analytic dashboard and salary prediction model were tally where a detailed analytic report was provided to encourage different data science roles with specific and effective career development guidance, using salary as the motivation key.","PeriodicalId":45667,"journal":{"name":"International Journal of Data Science and Analytics","volume":"67 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2023-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Human Resource Analytics on Data Science Employment Based on Specialized Skill Sets with Salary Prediction\",\"authors\":\"Tee Zhen Quan, Mafas Raheem\",\"doi\":\"10.18517/ijods.4.1.40-59.2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The research aims to perform meaningful human resource analysis on data science employment using the strong influences of specialized skills set with assisting salary prediction. With explosive big data development, a data science job shortage has occurred with high accurate recruitment demand to hire suitable professionals for specific data science roles. To achieve such outcomes, the current data science employment trends were analyzed based on a secondary dataset. Useful analytics insights for job securement and better career development were provided through the main dashboard. Besides, the significant in-demand data science skill variables were also identified for further effective model building. Particularly, certain data pre-processing techniques were performed extensively to prepare and optimize the dataset for the mentioned human resource analytics purposes. The ensemble model was selected as the most suitable salary prediction model with the lowest Average Squared Error (ASE) on validation. Despite the low prediction accuracy caused by numerous filtered skill variables, the salary prediction model’s main objective was to interpret the relationships between input variables and the target salary levels variable. Overall, the results from both the human resource analytic dashboard and salary prediction model were tally where a detailed analytic report was provided to encourage different data science roles with specific and effective career development guidance, using salary as the motivation key.\",\"PeriodicalId\":45667,\"journal\":{\"name\":\"International Journal of Data Science and Analytics\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Data Science and Analytics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18517/ijods.4.1.40-59.2023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Science and Analytics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18517/ijods.4.1.40-59.2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Human Resource Analytics on Data Science Employment Based on Specialized Skill Sets with Salary Prediction
The research aims to perform meaningful human resource analysis on data science employment using the strong influences of specialized skills set with assisting salary prediction. With explosive big data development, a data science job shortage has occurred with high accurate recruitment demand to hire suitable professionals for specific data science roles. To achieve such outcomes, the current data science employment trends were analyzed based on a secondary dataset. Useful analytics insights for job securement and better career development were provided through the main dashboard. Besides, the significant in-demand data science skill variables were also identified for further effective model building. Particularly, certain data pre-processing techniques were performed extensively to prepare and optimize the dataset for the mentioned human resource analytics purposes. The ensemble model was selected as the most suitable salary prediction model with the lowest Average Squared Error (ASE) on validation. Despite the low prediction accuracy caused by numerous filtered skill variables, the salary prediction model’s main objective was to interpret the relationships between input variables and the target salary levels variable. Overall, the results from both the human resource analytic dashboard and salary prediction model were tally where a detailed analytic report was provided to encourage different data science roles with specific and effective career development guidance, using salary as the motivation key.
期刊介绍:
Data Science has been established as an important emergent scientific field and paradigm driving research evolution in such disciplines as statistics, computing science and intelligence science, and practical transformation in such domains as science, engineering, the public sector, business, social science, and lifestyle. The field encompasses the larger areas of artificial intelligence, data analytics, machine learning, pattern recognition, natural language understanding, and big data manipulation. It also tackles related new scientific challenges, ranging from data capture, creation, storage, retrieval, sharing, analysis, optimization, and visualization, to integrative analysis across heterogeneous and interdependent complex resources for better decision-making, collaboration, and, ultimately, value creation.The International Journal of Data Science and Analytics (JDSA) brings together thought leaders, researchers, industry practitioners, and potential users of data science and analytics, to develop the field, discuss new trends and opportunities, exchange ideas and practices, and promote transdisciplinary and cross-domain collaborations. The journal is composed of three streams: Regular, to communicate original and reproducible theoretical and experimental findings on data science and analytics; Applications, to report the significant data science applications to real-life situations; and Trends, to report expert opinion and comprehensive surveys and reviews of relevant areas and topics in data science and analytics.Topics of relevance include all aspects of the trends, scientific foundations, techniques, and applications of data science and analytics, with a primary focus on:statistical and mathematical foundations for data science and analytics;understanding and analytics of complex data, human, domain, network, organizational, social, behavior, and system characteristics, complexities and intelligences;creation and extraction, processing, representation and modelling, learning and discovery, fusion and integration, presentation and visualization of complex data, behavior, knowledge and intelligence;data analytics, pattern recognition, knowledge discovery, machine learning, deep analytics and deep learning, and intelligent processing of various data (including transaction, text, image, video, graph and network), behaviors and systems;active, real-time, personalized, actionable and automated analytics, learning, computation, optimization, presentation and recommendation; big data architecture, infrastructure, computing, matching, indexing, query processing, mapping, search, retrieval, interoperability, exchange, and recommendation;in-memory, distributed, parallel, scalable and high-performance computing, analytics and optimization for big data;review, surveys, trends, prospects and opportunities of data science research, innovation and applications;data science applications, intelligent devices and services in scientific, business, governmental, cultural, behavioral, social and economic, health and medical, human, natural and artificial (including online/Web, cloud, IoT, mobile and social media) domains; andethics, quality, privacy, safety and security, trust, and risk of data science and analytics