International Journal of Data Science and Analytics

International Journal of Data Science and Analytics
影响因子:
3.4
ISSN:
print: 2364-415X
on-line: 2364-4168
研究领域:
Multiple
自引率:
8.30%
Gold OA文章占比:
32.22%
原创研究文献占比:
87.34%
SCI收录类型:
Emerging Sources Citation Index (ESCI) || Scopus (CiteScore)
期刊介绍英文:
Data Science has been established as an important emergent scientific field and paradigm driving research evolution in such disciplines as statistics, computing science and intelligence science, and practical transformation in such domains as science, engineering, the public sector, business, social sci­ence, and lifestyle. The field encompasses the larger ar­eas of artificial intelligence, data analytics, machine learning, pattern recognition, natural language understanding, and big data manipulation. It also tackles related new sci­entific chal­lenges, ranging from data capture, creation, storage, retrieval, sharing, analysis, optimization, and vis­ualization, to integrative analysis across heterogeneous and interdependent complex resources for better decision-making, collaboration, and, ultimately, value creation.The International Journal of Data Science and Analytics (JDSA) brings together thought leaders, researchers, industry practitioners, and potential users of data science and analytics, to develop the field, discuss new trends and opportunities, exchange ideas and practices, and promote transdisciplinary and cross-domain collaborations. The jour­nal is composed of three streams: Regular, to communicate original and reproducible theoretical and experimental findings on data science and analytics; Applications, to report the significant data science applications to real-life situations; and Trends, to report expert opinion and comprehensive surveys and reviews of relevant areas and topics in data science and analytics.Topics of relevance include all aspects of the trends, scientific foundations, techniques, and applica­tions of data science and analytics, with a primary focus on:statistical and mathematical foundations for data science and analytics;understanding and analytics of complex data, human, domain, network, organizational, social, behavior, and system characteristics, complexities and intelligences;creation and extraction, processing, representation and modelling, learning and discovery, fusion and integration, presentation and visualization of complex data, behavior, knowledge and intelligence;data analytics, pattern recognition, knowledge discovery, machine learning, deep analytics and deep learning, and intelligent processing of various data (including transaction, text, image, video, graph and network), behaviors and systems;active, real-time, personalized, actionable and automated analytics, learning, computation, optimization, presentation and recommendation; big data architecture, infrastructure, computing, matching, indexing, query processing, mapping, search, retrieval, interopera­bility, exchange, and recommendation;in-memory, distributed, parallel, scalable and high-performance computing, analytics and optimization for big data;review, surveys, trends, prospects and opportunities of data science research, innovation and applications;data science applications, intelligent devices and services in scientific, business, governmental, cultural, behavioral, social and economic, health and medical, human, natural and artificial (including online/Web, cloud, IoT, mobile and social media) domains; andethics, quality, privacy, safety and security, trust, and risk of data science and analytics
CiteScore:
CiteScoreSJRSNIPCiteScore排名
6.40.7391.312
学科
排名
百分位
大类:Mathematics
小类:Applied Mathematics
61 / 635
90%
大类:Mathematics
小类:Modeling and Simulation
48 / 324
85%
大类:Computer Science
小类:Computational Theory and Mathematics
28 / 176
84%
大类:Computer Science
小类:Information Systems
112 / 394
71%
大类:Computer Science
小类:Computer Science Applications
232 / 817
71%
发文信息
WOS期刊分区
学科分类
Q2COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Q2COMPUTER SCIENCE, INFORMATION SYSTEMS
历年影响因子
2022年2.4000
2023年3.4000
历年发表
2014年0
2015年0
2016年38
2017年51
2018年79
2019年34
2020年34
2021年59
2022年72
投稿信息
出版周期:
8 issues per year
初审时长:
12 days
出版商:
Springer Nature

International Journal of Data Science and Analytics - 最新文献

Power Analysis for Causal Discovery.

Pub Date : 2024-04-01 DOI: 10.1007/s41060-023-00399-4 Erich Kummerfeld, Leland Williams, Sisi Ma

Discrete double factors of a family of odd Weibull-G distributions: features and modeling

Pub Date : 2023-12-29 DOI: 10.1007/s41060-023-00487-5 M. El-Morshedy, H. S. Shahen, M. Eliwa

Artificial intelligence trend analysis in German business and politics: a web mining approach

Pub Date : 2023-12-20 DOI: 10.1007/s41060-023-00483-9 Philipp Dumbach, Leo Schwinn, Tim Löhr, Tassilo Elsberger, Bjoern M. Eskofier
查看全部
免责声明:
本页显示期刊或杂志信息,仅供参考学习,不是任何期刊杂志官网,不涉及出版事务,特此申明。如需出版一切事务需要用户自己向出版商联系核实。若本页展示内容有任何问题,请联系我们,邮箱:info@booksci.cn,我们会认真核实处理。
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信