基于贝叶斯网络的多干旱指标合并广义加权新方案

Muhammad Ahmad Raza, Mohammed M. A. Almazah, Nadhir Al-Ansari, Ijaz Hussain, Fuad S. Al-Duais, Mohammed A. Naser
{"title":"基于贝叶斯网络的多干旱指标合并广义加权新方案","authors":"Muhammad Ahmad Raza, Mohammed M. A. Almazah, Nadhir Al-Ansari, Ijaz Hussain, Fuad S. Al-Duais, Mohammed A. Naser","doi":"10.1155/2023/8260317","DOIUrl":null,"url":null,"abstract":"Drought is one of the most multifaceted hydrologic phenomena, affecting several factors such as soil moisture, surface runoff, and significant water shortages. Therefore, monitoring and assessing drought occurrences based on a single drought index are inadequate. The current study develops a multiscalar weighted amalgamated drought index (MWADI) to amalgamate multiple drought indices. The MWADI is mainly based on the normalized average dependence posterior probabilities (ADPPs). These ADPPs are obtained from Bayesian networks (BNs)-based Markov Chain Monte Carlo (MCMC) simulations. Results have shown that the MWADI correlates more with the standardized precipitation index (SPI) and the standardized precipitation temperature index (SPTI). As proposed, the MWADI synthesizes drought characteristics of different multiscalar drought indices to reduce the uncertainty of individual drought indices and provide a comprehensive drought assessment.","PeriodicalId":72654,"journal":{"name":"Complex psychiatry","volume":"17 1","pages":"8260317:1-8260317:23"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Bayesian Network-Based Generalized Weighting Scheme for the Amalgamation of Multiple Drought Indices\",\"authors\":\"Muhammad Ahmad Raza, Mohammed M. A. Almazah, Nadhir Al-Ansari, Ijaz Hussain, Fuad S. Al-Duais, Mohammed A. Naser\",\"doi\":\"10.1155/2023/8260317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Drought is one of the most multifaceted hydrologic phenomena, affecting several factors such as soil moisture, surface runoff, and significant water shortages. Therefore, monitoring and assessing drought occurrences based on a single drought index are inadequate. The current study develops a multiscalar weighted amalgamated drought index (MWADI) to amalgamate multiple drought indices. The MWADI is mainly based on the normalized average dependence posterior probabilities (ADPPs). These ADPPs are obtained from Bayesian networks (BNs)-based Markov Chain Monte Carlo (MCMC) simulations. Results have shown that the MWADI correlates more with the standardized precipitation index (SPI) and the standardized precipitation temperature index (SPTI). As proposed, the MWADI synthesizes drought characteristics of different multiscalar drought indices to reduce the uncertainty of individual drought indices and provide a comprehensive drought assessment.\",\"PeriodicalId\":72654,\"journal\":{\"name\":\"Complex psychiatry\",\"volume\":\"17 1\",\"pages\":\"8260317:1-8260317:23\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex psychiatry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/8260317\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex psychiatry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/8260317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

干旱是最多方面的水文现象之一,影响到土壤湿度、地表径流和严重的水资源短缺等几个因素。因此,基于单一干旱指数监测和评估干旱事件是不够的。本研究提出了一个多标量加权合并干旱指数(MWADI)来合并多个干旱指数。MWADI主要基于归一化平均依赖后验概率(ADPPs)。这些adpp是通过基于贝叶斯网络(BNs)的马尔可夫链蒙特卡罗(MCMC)模拟得到的。结果表明,MWADI与标准化降水指数(SPI)和标准化降水温度指数(SPTI)的相关性较强。根据建议,MWADI综合不同多尺度干旱指数的干旱特征,降低单个干旱指数的不确定性,提供综合干旱评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Bayesian Network-Based Generalized Weighting Scheme for the Amalgamation of Multiple Drought Indices
Drought is one of the most multifaceted hydrologic phenomena, affecting several factors such as soil moisture, surface runoff, and significant water shortages. Therefore, monitoring and assessing drought occurrences based on a single drought index are inadequate. The current study develops a multiscalar weighted amalgamated drought index (MWADI) to amalgamate multiple drought indices. The MWADI is mainly based on the normalized average dependence posterior probabilities (ADPPs). These ADPPs are obtained from Bayesian networks (BNs)-based Markov Chain Monte Carlo (MCMC) simulations. Results have shown that the MWADI correlates more with the standardized precipitation index (SPI) and the standardized precipitation temperature index (SPTI). As proposed, the MWADI synthesizes drought characteristics of different multiscalar drought indices to reduce the uncertainty of individual drought indices and provide a comprehensive drought assessment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信