通过模拟函数修正𝛂-Admissible𝓩-Contraction的一类新的重合和公共不动点定理

IF 0.5 Q4 MULTIDISCIPLINARY SCIENCES
Sahil Arora, Manoj Kumar, S. Mishra
{"title":"通过模拟函数修正𝛂-Admissible𝓩-Contraction的一类新的重合和公共不动点定理","authors":"Sahil Arora, Manoj Kumar, S. Mishra","doi":"10.5614/j.math.fund.sci.2020.52.1.3","DOIUrl":null,"url":null,"abstract":"In this manuscript, we introduce the concept of modified α-admissible contraction with the help of a simulation function and use this concept to establish some coincidence and common fixed-point theorems in metric space. An illustrative example that yields the main result is given. Also, several existing results within the frame of metric space are established. The main theorem was applied to derive the coincidence and common fixed-point results for α-admissible 𝒵-contraction.","PeriodicalId":16255,"journal":{"name":"Journal of Mathematical and Fundamental Sciences","volume":"20 1","pages":"27-42"},"PeriodicalIF":0.5000,"publicationDate":"2020-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A New Type of Coincidence and Common Fixed-Point Theorems for Modified 𝛂-Admissible 𝓩-Contraction Via Simulation Function\",\"authors\":\"Sahil Arora, Manoj Kumar, S. Mishra\",\"doi\":\"10.5614/j.math.fund.sci.2020.52.1.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this manuscript, we introduce the concept of modified α-admissible contraction with the help of a simulation function and use this concept to establish some coincidence and common fixed-point theorems in metric space. An illustrative example that yields the main result is given. Also, several existing results within the frame of metric space are established. The main theorem was applied to derive the coincidence and common fixed-point results for α-admissible 𝒵-contraction.\",\"PeriodicalId\":16255,\"journal\":{\"name\":\"Journal of Mathematical and Fundamental Sciences\",\"volume\":\"20 1\",\"pages\":\"27-42\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical and Fundamental Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5614/j.math.fund.sci.2020.52.1.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical and Fundamental Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5614/j.math.fund.sci.2020.52.1.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 1

摘要

本文在模拟函数的帮助下引入了修正α-可容许收缩的概念,并利用这一概念建立了度量空间中的一些重合定理和公共不动点定理。给出了一个能产生主要结果的说明性例子。同时,在度量空间框架内建立了一些已有的结果。应用主要定理推导了α-可容许𝒵-contraction的重合和公共不动点结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Type of Coincidence and Common Fixed-Point Theorems for Modified 𝛂-Admissible 𝓩-Contraction Via Simulation Function
In this manuscript, we introduce the concept of modified α-admissible contraction with the help of a simulation function and use this concept to establish some coincidence and common fixed-point theorems in metric space. An illustrative example that yields the main result is given. Also, several existing results within the frame of metric space are established. The main theorem was applied to derive the coincidence and common fixed-point results for α-admissible 𝒵-contraction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
24 weeks
期刊介绍: Journal of Mathematical and Fundamental Sciences welcomes full research articles in the area of Mathematics and Natural Sciences from the following subject areas: Astronomy, Chemistry, Earth Sciences (Geodesy, Geology, Geophysics, Oceanography, Meteorology), Life Sciences (Agriculture, Biochemistry, Biology, Health Sciences, Medical Sciences, Pharmacy), Mathematics, Physics, and Statistics. New submissions of mathematics articles starting in January 2020 are required to focus on applied mathematics with real relevance to the field of natural sciences. Authors are invited to submit articles that have not been published previously and are not under consideration elsewhere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信